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Abstract— Making accurate predictions about the dynamic
environment is crucial for the trajectory planning of mobile
robots. Predictions are by nature uncertain, and for motion
prediction multiple futures are possible for the same historic
behavior. In this work, the objective is to predict possible
future positions of the target object for the collision avoidance
purpose for mobile robots by considering different uncertainty
by combining a sampling-based idea with data-driven methods.
More specifically, we propose a major improvement on a loss
function for multiple hypotheses and test it with convolutional
neural networks on motion prediction problems. We imple-
ment post-processing heuristics that produce multiple Gaussian
distribution estimations, and show that the result is suitable
for trajectory planning for mobile robots. The method is also
evaluated with the Stanford Drone Dataset.

I. INTRODUCTION

Motion prediction plays an important role in many tech-
nologies such as autonomous driving [1], [2], surveillance
and security systems [3], interactive industrial and service
robots [4], [S]. For mobile robots navigating in an environ-
ment populated by heterogeneous agents such as humans and
manually operated vehicles, the trajectory planning problem
is facilitated by the use of predictions about future positions
of the mobile agents. The predictions enable the generation
of smooth trajectories that do not cause the robot to make
unnecessary sudden changes typically encountered when
only the current positions are available [6].

Motion prediction is challenging due to uncertainty about
the long-term goal and the short-term path taken by the agent.
This brings two sorts of uncertainty: aleatory and epistemic
[7]. The aleatoric uncertainty is the indissoluble intrinsic
randomness and can be estimated given enough data. It can
be parameterized statistically as variances or ranges. The
epistemic uncertainty is the uncertainty presumably caused
by the lack of knowledge and might be more significant when
the randomness in motion is small. This situation commonly
exists in factories and warehouses where accessible areas and
rules of action are regulated. In motion prediction, epistemic
uncertainty appears with multiple potential destinations or al-
ternative paths. Taking each choice as a mode, multimodality
is the main representation of epistemic uncertainty.

In this work, we focus on multimodal motion prediction
assuming that the target object is detected and tracked by a
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Fig. 1. The concept of multimodal motion prediction by sampling. In
this figure, the person in red is our target object while the blue entity is a
moving obstacle. Given the past positions of the target object, combining
the environmental context, the idea is to generate samples (black crosses) of
its possible future positions and estimate the uncertainty of the prediction.

vision system, and propose a deep learning method produc-
ing multiple hypotheses of the future position of the target
object by improving a multiple hypothesis meta-loss. Hy-
potheses are treated as samples from unknown ground truth
distributions and processed by an unsupervised clustering
algorithm, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [8], to distinguish different modes
and rebuild the distribution, see Fig.[I} Such a Clustering and
Gaussian Fitting (CGF) approach provides stable parameter-
ized and geometric short-term predictions that can be used
by Model Predictive Control (MPC) controllers as discussed
in [6]. Convolutional neural networks (CNNs) are used as
the backbone to directly handle images captured by cameras,
thus the model could assimilate the contextual cues as well
as the influence of other objects in the scene. An inference
procedure of the approach is depicted in Fig.

A. Motion Prediction

Motion has different interpretations. Our work aims at
future position prediction, thus in this paper motion indicates
movement in 2D space. The development of motion predic-
tion problems is introduced in [9]. Earlier motion prediction
methods model motion as physical processes first and make
predictions according to the models, such as the Social Force
[10] and the Reciprocal Velocity Obstacle model [11].

More recent studies treat motions as patterns. From classic
machine learning approaches, such as Gaussian Processes
[12], to deep learning methods, researchers place attention
on discovering hidden states of target objects and their
interactions with external factors. Social LSTM [13] and
Social Attention [14] explore the social influence on human
motion using Recurrent Neural Networks. However, the static
environment is neglected, which is an important source of
epistemic uncertainty. Therefore, social-based models suit



better for human motion predictions in open areas. To include
the surrounding information, SS-LSTM [15] encodes scenes
by CNNs and feeds the latent information to LSTM encoders.
In [16], a multimodal trajectory forecasting approach based
on semantic segmentation networks is introduced, where
two semantic segmentation networks are used to predict
the waypoints first and the trajectory accordingly. In [17],
convolutional recurrent neural networks are used to encode
the history information divided into grid cells and decode
the features into multimodal trajectory predictions.

B. Multiple Choice Learning

Multimodality means probability distributions with more
than one mode. Multimodal estimation is important for many
real-world applications involving multiple solutions. Multiple
Choice Learning (MCL) [18] is one manner to estimate
multimodality. A pipeline of combining MCL with deep
learning methods is proposed in [19] as the meta-loss.

In [20], the meta-loss is improved with the idea of generat-
ing multiple hypotheses and estimating modes in the form of
mixture models such as Gaussian Mixture Models (GMMs)
by training Mixture Density Fitting (MDF) networks. A
two-stage CNN-based model is used, which first generates
several hypotheses of the future position and then uses the
MDF to refine the estimation into mixture models. This is
necessary since the hypotheses generated in the first stage
are not accurate. The MDF screens every hypothesis and
keeps the accurate ones. As discussed in [6], the irregular
contour of GMMSs cannot be easily added as constraints for
the trajectory planning of mobile robots. A solution is to treat
each mixture component separately as an elliptical obstacle.
However, as shown in Section [V a GMM generated by the
MDF model may have redundant and abnormal components.
Instead, we propose another CGF method to solve this
problem.

The main contributions of this paper are:

e« A multimodal motion prediction approach on image
data combining deep learning multiple hypothesis es-
timation with unsupervised clustering and fitting;

o A multiple hypothesis loss to obtain more accurate
estimations compared to the loss proposed in [20];

« Benchmark of the proposed loss function against previ-
ous approaches on a simulated and a real-world dataset.

II. PRELIMINARIES

We introduce the definitions of hypothesis and modes for
this context, as well as the multiple hypotheses meta-loss.

A. Hypotheses and Modes

Given a question, multiple candidate answers might exist.
For instance, Fig. [I| shows two possibilities given the ques-
tion of the future position of the target object. Therefore,
making multiple hypotheses is required. Given n collected
answers Y1, Yz, - - - , Yn, the goal is to generate K hypotheses
{h*}E | covering as many answers as possible, which in
our case are target positions. Since different target positions
may show the same tendency, each one can be regarded as a
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Fig. 2. The inference procedure of the proposed approach. The input is
a stack of object masks and images captured by cameras. If multiple time
offsets are required for predictions, an extra time offset channel is attached.
Multiple hypotheses of the future position of the target object are produced
by deep neural networks and further processed by DBSCAN and Gaussian
fitting to estimate the final multimodal motion prediction.

sample from a potential mode. Modes can be interpreted as
particular ways in which something is done or takes place.
The goal is adjusted to estimate all modes from hypotheses.

To further clarify the connotation of modes, a transforma-
tion from hypotheses to modes is very crucial. The simplest
way to define modes is to use thresholds. Nonetheless, when
there is no universal and explicit threshold, some criteria
to distinguish modes are necessitated. Formally, define M
as the set containing all samples of a mode. For y;,y2 € Y
and a definition of the distance d(y1,y2) between them, they
belong to the same mode if and only if their distance is no
larger than a given threshold e:

Y1,Y2 EM <= d(y1,y2) <e (1)

or there exists another sample y € ) such that y; and y»
can be proved to belong to the same mode with y:

Jyel, yyymeMandy,yp e M — M=M (2)

Two target positions y1, y» fulfilling either Eq. (I or () are
regarded to belong to the same mode M.

B. Multiple Hypothesis Meta-Loss

Assuming a hypothesis generator f : & — 7, mapping
the input € X to the guesses h € H of the target position:

(P = f(@) = (@, yD),. ., @,y )} 3)

Let [n] denote the set {1,2,...,n}. Given a target position
y and a loss function [(-), there are K losses overall 1F) =
I(y,h*), k € [K]. The meta-loss [19] for training such
models can be simplified as the Winner-Takes-All (WTA)
loss [20] as in Eq. (@), where 6(A) is the general Dirac delta
function which is 1 if A is true and O otherwise. The basic
idea is to only update the hypothesis with the smallest loss.

K

Lwta = Zwkl(y, h*), wy = §(k = argmin l(”) ())
k=1 ‘

There are two issues of the WTA loss in practice. At least one

hypothesis will be attracted by at least two targets if there

are fewer hypotheses than targets in the neighbor area. Such

a hypothesis will have a local minimum in the equilibrium



® |
(%3

®

3

furthest

Fig. 3. The concept of the AWTA loss. The two circles are the ground
truth while the five crosses are hypotheses. After determining the range r,
all hypotheses within the range r will be updated.

point of all targets that attract it. The second problem is that
each target only attracts one hypothesis. Many hypotheses
will be discarded, which cannot be tracked.

A relaxed WTA [19] is introduced to solve the second
problem. Instead of only updating the winner, the remaining
ones are also updated with a small relaxation factor. This
ensures that no hypothesis is abandoned, but all relaxed
hypotheses are trapped by the equilibrium. An Evolving
WTA (EWTA) [20] is proposed to solve the first issue. It
changes the idea of winner-takes-all to top-winners-take-all,
i.e. the top ki, winners will be updated. During the training,
ktop acts as a preset hyperparameter. The strategy is to update
all hypotheses at the beginning and keep halving k., once
in a while until k;,, = 1. In this way, more hypotheses are
updated comparing to the original or relaxed WTA. However,
it still leaves some hypotheses at equilibria, which need to
be removed by other methods such as MDFs [20].

The EWTA loss lacks the control on every hypothesis
especially when k;,, = 1. Thus, a more adaptive way to
estimate each hypothesis is needed. Conversely to the orig-
inal WTA fashion, one solution is to decide if a hypothesis
belongs to a mode or not by looking at its distance or
similarity to the hypothesis with the smallest loss.

III. PROBLEM FORMULATION

Given an input &; € X, i € [N], and one corresponding
target position y; € ), which is a sample from M; potential
modes, K hypotheses {hf}szl € H are generated to capture
all modes. In our case, x; is a stack of images, which is a 3D
matrix. The target position y; and hypotheses h¥ are pairs
of coordinates indicating the future positions of the target
object after a certain amount of time g By classifying
these hypotheses according to some specific criterion, M;
clusters are formed as modes. For simplicity, the subscript 7 is
omitted if no ambiguity. The inference procedure is shown in
Fig.[2l A mode M is determined by a cluster of all targets in
a certain area and is represented by a Gaussian distribution.

IV. ADAPTIVE AND SWARM WTA LOSSES

In this section, we formulate the Adaptive WTA (AWTA)
and the Swarm WTA (SWTA) approaches, and compute
explicit multimodal distributions based on them.

A. Adaptive WTA Loss

Motion prediction exhibits multiple uncertainties with an
unknown number of modes and dispersal samples. Further-
more, the uncertainties can be time-variant or scene-variant.

To solve this problem, we propose an adaptive version of the
WTA loss, named the Adaptive WTA (AWTA) loss.

The initial phase is the same as in the EWTA loss. The top
ktop winners are updated and k;,, keeps decreasing during
training. The difference is that when k;,, = 1, an adaptive
range is used to update the hypothesis. Any hypotheses with
losses smaller than the range will be updated. The range r
is defined as

r= min (I™) + a- [ max (™) — min (I*) 5
ke[K]( ) ke[K]( ) ke[K]( ) ©)
where « € [0, 1) is hyperparameter used to control how close
the range is to the smallest loss. If a = 0, then it is the same
as the WTA loss and the whole progress is the same as the
EWTA loss. An illustration of the AWTA loss is in Fig. [3
The formulation of the AWTA loss is defined as:
K
LawTa = Zw}cl(y,hk), w), = 5(l(k) <r) (6)
k=1
The AWTA loss has a clustering effect on the hypotheses
since all hypotheses inside the adaptive range will be drawn
to the same point. This effect gives a straightforward predic-
tion of the mean position of each component in the ground
truth distribution.

B. Swarm WTA Loss

The clustering effect of the AWTA loss gives a better esti-
mation of mean positions, but the aleatoric uncertainty is lost
during this process. This problem affects the effectiveness
of the result, particularly when the aleatoric uncertainty is
substantial. To conquer this deficiency, we modify the AWTA
loss by altering the updating rule in (6):

K
Lswta = Z wy, nlanl(y, h') (7
k=1
where w), is the same as (). We call this Swarm WTA
(SWTA) since the update extent of every hypothesis in the
adaptive range depends on the one with the smallest loss,
which exhibits a local swarm behavior. The SWTA loss is
used after the AWTA loss to cancel the clustering effect
and estimate the variance of the ground truth distribution. A
comparison amongst EWTA, AWTA, and SWTA is shown in
Fig. fi] which shows that the equilibrium point in the EWTA
case is not present in AWTA and SWTA cases. Compared
to the AWTA case, SWTA losses cancel the clustering effect
and give better approximations of the variance.

C. Unsupervised Mode Split

Using the resultant hypotheses, an unsupervised clustering
algorithm is applied to explicitly display multiple modes.
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [8] is efficient and fits our definition of modes.
In the DBSCAN, we use the Euclidean distance as the metric
and select € in Eq. (I}, and a minimal number of hypotheses
Nenster required for a cluster according to the scenario. Once
all modes have been split, Gaussian distributions can easily
fit for each mode by calculating the mean value and the
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Fig. 4. These figures show a comparison among different WTA losses with CGF on the SID. The simulation is a target vehicle that approaches a crossing.
Given its past positions (small black circles), the objective is to predict its possible future positions. The crosses are clustered and unclustered predictions.
The yellow ellipses are the approximated Gaussian distributions based on the clustered hypotheses. From the left to the right, the first figure shows the
EWTA approach, where some hypotheses are trapped in an equilibrium point. The second and third figures show the hypotheses based on AWTA and SWTA
respectively and in both cases the equilibrium point is not present. A simulation of the predictions can be seen at https://youtu.be/vIDNlaUTbxgl

variance of all hypotheses belonging to that mode. This
CGF method generates parameterized and geometric results
without redundant modes, as shown in Fig. El

V. EVALUATION
A. Experimental Setup

To generate multiple hypotheses, we construct a regression
neural network as in [20], with K - D, outputs, where K is
the preset number of hypotheses and D, is the dimension
of target positions. A light ResNet34 [21] is adopted as the
backbone together with the multiple hypothesis regression
head. It mainly contains four blocks with 3, 4, 6, 3 convo-
lutional layers respectively. Layers have 16/32/64/128 filters
in the first/second/third/fourth block. The neural network is
trained with different WTA losses. The input of the neural
network is, for the current time ¢ and past time h, a stack
of images consisting of environment frames I and object
location masks L, * = (Iy—p,...,It,Li—p, ..., Ls). The
neural network generates K hypotheses to compare with the
label y and backpropagate the WTA loss. In the AWTA loss,
a is set to 0.05. The source code is available online [1]

B. Datasets

The proposed approach is evaluated on a synthetic and
a real-world dataset. The synthetic dataset, called Single-
object Interaction Dataset (SID), simulates a crossing scene
as illustrated in Fig. ] There is one object approaching the
crossing with multiple possible actions. The sampling time is
0.2 sec. The prediction time offset for single future position
predictions is Tosrser = 4 sec and for trajectory forecasting is
Tostset = 0~2 sec, i.e. 10 time steps in the future.

The model is also tested on a real-world dataset, the
Stanford Drone Dataset (SDD) [22]. The dataset is resampled
to 3 FPS. The time offset is Tygse = Hs. A crossing scene
in the SDD is selected for training and testing as shown in

Ittps://github.com/Woodenonez/
MultimodalMotionPred_SamplingWTACGF_Pytorch

Fig. []} Three videos under the “hyang” scene of the SDD
are used to generate 165/47 trajectories for training/testing.

C. Metrics

To evaluate different models, four metrics are selected to
examine different aspects of prediction results. These metrics
verify if at least one mode from a prediction is accurate and
if the prediction covers the multimodality properly.

Oracle error [18]. At least one predicted mode should be
close to the ground truth. This can be measured by the
oracle loss that selects the best hypothesis or mode to the
ground truth and calculates the loss.

Negative log-likelihood (NLL). The NLL loss is com-
monly used to train neural networks [20]. It takes the
negative logarithm of the likelihood of the ground truth
with respect to the estimated distribution.

Mahalanobis distance (MD). It measures the distance
between a point and a distribution. Two variants, the Oracle
MD (OMD) and the Weighted MD (WMD) [6] are used.
The OMD measures the MD from the best-predicted mode
to the ground truth. The WMD measures the weighted
summation of MDs of each mode.

From the definitions of these metrics, the oracle error
evaluates the best-predicted mode pointwise while the OMD
evaluates the best-predicted mode with respect to distribu-
tions. The NLL loss and WMD analyze the performance of
all predictions with all modes. NLL losses are more general
for any probability distributions but might tend to infinity,
while the WMDs are less numerically vulnerable but only
suitable for the evaluation of multimodal distributions.

D. Evaluation

Mixture Density Networks (MDNs) [23] are included as
a baseline. MDNs are a type of neural networks producing
mixture densities, but are known to be unstable for high-
dimensional inputs [20], [6]. On the SID, the performance
of the Kalman Filters (KFs) with constant velocity models,
MDNs, WTA with CGF, and WTA with MDF are compared.
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These figures show the comparison between the CGF and MDF methods. The yellow ellipses are predicted Gaussian components. The first

figure shows the prediction result by the CGF method. Since the predicted Gaussian components are directly generated from the hypotheses, there are no
redundant or masked abnormal ones. In comparison, even though the MDF method makes accurate predictions on the probability distribution as shown in

the last figure, it might contain abnormal components as shown in the middle.
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Fig. 6. The trajectory forecasting result with the time offset from 1 to 10.
Red and green dots are hypotheses belonging to two different modes. Yellow
ellipses are estimated Gaussian distributions, and lighter colors mean further
predictions. Here only shows the ground truth at time step 10. A simulation
of the predictions can be seen at https://youtu.be/s-sDAfs5I08,

On the SDD, the performance of the Kalman Filters (KFs)
with constant velocity models and WTA with CGF are
evaluated. MDF methods are not included in the evaluation
on the SDD since they do not suit our application. The
results are shown in Table [l and [} In Table[l] since KF and
MDN produce single-mode predictions, their WMDs are the
same as OMDs. MDF methods in general have slightly better
results, but they cannot be used practically for the irregular
contour of its predictions. Therefore, the comparison is made
among KF, MDN, and CGF methods. Meanwhile, MDF
methods are listed to show that the CGF approaches can
achieve comparably good results.

In the evaluation on the SID, one can see that the
MDF method outperforms the CGF method in terms of
the estimation of the probability distribution. However, the
components of the estimated mixture density from the MDF
are not observable. Some components might be redundant
and even abnormal. An example is illustrated in Fig. [3]
Another example, which is not shown, is that there might
be multiple components overlapping with each other. On the
real-world SDD, the clustering effect of the AWTA and the
decentralizing effect of the SWTA are shown in Fig. [7] The
evaluation also suggests that the proposed losses are better
than the Kalman filter and the EWTA loss in terms of the

NLL metric. However, multimodality is not shown in the test.
This might be due to the fact that there is larger randomness
in the SDD compared to the simulation, and the WTA loss
is sensitive to large noise and outliers.

TABLE I
EVALUATION RESULTS ON THE SID.

Dataset SID Test

Method Oracle | OMD NLL WMD

KF 5.248 3.554 | 41.20 -

MDN 3.120 1.338 | 2.843 -
EWTA+CGF 0.127 0.566 | 1.107 | 5.098
AWTA+CGF 0.075 0.875 Inf 8.262
SWTA+CGF 0.088 0.510 | 0.449 | 4.670
EWTA+MDF 0.073 0.465 | 0.141 4.833
SWTA+MDF 0.065 0.527 | 0.427 | 5.102

TABLE II

EVALUATION RESULTS ON THE CROSSING SCENE IN THE SDD.

Dataset SDD Test
Method NLL
KF 8.507
EWTA+CGF 8.139
AWTA+CGF 9.939
SWTA+CGF 7.828

E. Trajectory Forecasting

The objective of this work is to provide motion prediction
of objects to ATRs. These mobile robots can accomplish
intelligent behaviors such as collision avoidance and inter-
action with workers using the predicted positions. In [6], it
is discussed how to combine motion prediction results with
MPC controllers. Instead of predicting the moving obstacle’s
position of one future time instant, the controller needs to
know the positions of successive time steps. This is known
as trajectory forecasting. In order to make predictions on
future positions at different time instants, one more channel
is added in the inputs as the time offset channel as in Fig.
During training, training data with different prediction time
offsets Tosser 1 shuffled together and the last channel of the
stacked input images indicates the time offset. For example,
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Fig. 7. These figures show the comparison among different WTA losses with CGF on the SDD test data. It is evident that the predicted hypotheses from
the EWTA case are more dispersive than the AWTA and SWTA cases. Therefore, it is hard to cluster the predicted hypotheses from the EWTA.

if the prediction time offset is 10, the last channel of the
input is a frame with 10s. The effect is shown in Fig. [6]

VI. CONCLUSIONS

In this work, a new method for multimodal motion
prediction based on a sampling and clustering approach
is proposed. We improve a multiple hypothesis estimation
WTA loss, propose the AWTA and SWTA losses, and apply
the DBSCAN clustering method with Gaussian fitting to
generate multimodal predictions. The importance of making
parameterized and geometric predictions is addressed so
they can be utilized by model predictive controllers of
mobile robots for collision avoidance. The evaluation on the
simulated and real-world datasets shows that the proposed
approach results in improved future position predictions
compared to previously published loss functions.

Currently, a light neural network architecture is used. More
experiments on the generalization of the proposed method
should be made with more complicated networks. Future
work focuses on improving the stability of loss functions
so that it could tolerate large randomness and outliers.
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