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Abstract— In this paper, we present an efficient approach
to real-time collision-free navigation for mobile robots. By
integrating deep reinforcement learning with model predictive
control, our aim is to achieve both collision avoidance and
computational efficiency. The methodology begins with training
a preliminary agent using deep Q-learning, enabling it to
generate actions for next time steps. Instead of executing these
actions, a reference trajectory is generated based on them,
which avoids obstacles present on the original reference path.
Subsequently, this local trajectory is employed within an MPC
trajectory-tracking framework to provide collision-free guid-
ance for the mobile robot. Experimental results demonstrate
that the proposed DQN-MPC hybrid approach outperforms
pure MPC in terms of time efficiency and solution quality.

I. INTRODUCTION

Mobile Robots (MRs) have become increasingly signif-
icant in various aspects of daily life and industrial appli-
cations. In particular, MRs have been widely utilized in
industrial settings to alleviate human labor and enhance op-
erational efficiency. Automatic Guided Vehicles (AGVs) [1]
represent a class of MRs that adhere to predetermined paths
and employ sensors to passively evade collisions, meaning
that AGVs decelerate and halt if their pre-defined paths are
obstructed. In contrast, Autonomous Mobile Robots (AMRs)
exhibit greater adaptability in terms of navigational strategies
and decision-making capabilities [2]. A key advantage of
AMRs is their proactive collision avoidance, allowing them
to deviate from the original paths to circumvent obstacles.
This online obstacle avoidance necessitates a sophisticated
controller that accounts for obstacles. In this work, we
propose a novel approach for online obstacle avoidance.

The classic motion planning and control for a mobile robot
encompasses three steps [3], [4]: path planning, trajectory
generation, and trajectory tracking control. Path planning
[3], [4] aims to identify a collision-free route connecting
the starting state to the goal state of the mobile robot.
Utilizing the reference path, a reference trajectory comprises
a sequence of path nodes, coupled with the corresponding
time when the robot should reach each node. The tracking
and control problem entails generating actions, such as the
velocity or acceleration, to ensure the robot remains in
close proximity to the reference trajectory while avoiding
collisions. Path planning and trajectory generation can be
performed online or offline, while the control typically occurs
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Fig. 1. Blocks outlined by dashed lines are assumed to be given in this
work, while all other blocks are implemented. The blocks with red borders
indicate the main contributions. On the right side, there are two types of
sensors shown: a vision system, which is a camera installed in the ceiling,
and a scanner such as a lidar, which is attached to the robot. The DQN
generates an alternative reference trajectory, diverging from the original one
if it’s obstructed. Lastly, the MPC solver makes the final decision regarding
the control signals.

in real time. Online motion planning is crucial for addressing
environmental changes, including unexpected obstacles. The
term unexpected refers to obstacles that were not present
during the reference path planning. In this study, we assume
that a high-level job scheduler [5] provides the reference
path. The focus of this work lies in the online trajectory
generation and control of a mobile robot.

Model Predictive Control (MPC) has emerged as a promi-
nent technique for ensuring collision-free trajectory tracking
and has demonstrated efficacy in numerous applications [6]–
[9]. Owing to its ability to treat obstacles as constraints
and its receding horizon control strategy, MPC can predict
potential collisions within the horizon and propose an action
for collision-free trajectory tracking. Nevertheless, complex
optimization problems often necessitate time-consuming nu-
merical and iterative solvers [10], and the computational
time is difficult to predict due to the uncertain number of
iterations required, which may result in a breach of real-
time constraints. Another issue with MPC solvers pertains
to their susceptibility to getting stuck in local optima [11].
Recently, Reinforcement Learning (RL), particularly Deep
Reinforcement Learning (DRL), emerges as an alternative for
motion planning and control problems [12]. In comparison
to traditional optimization solvers, the computational time
is essentially constant and predictable for DRL methods.
The initial motion-planning task assigned to RL is in two-
dimensional grid maps with simple action spaces, such as
the Frozen Lake task [13]. A different strategy for estimating
feasible and flexible reference trajectories involves generat-
ing physical commands, such as velocity [14]–[17], which
allows MRs to be directly controlled by RL algorithms.
However, a DRL controller cannot guarantee the success rate
of collision-free navigation, as it is not interpretable and often
produces unstable and fluctuating actions even when there
are no obstacles blocking the mobile robot [14], [17].



In this paper, we propose a hybrid approach integrating
MPC and DQNs for collision-free navigation of AMRs, as
illustrated in Fig. 1. This combination addresses the separate
limitations of MPC and DQNs. Specifically, MPC generates
speed and angular velocity commands for the MR based on
the heuristic reference trajectory from the DQN. The MR can
smoothly reach its goal without colliding with unexpected
obstacles in numerous use cases, and the proposed method
outperforms both MPC and DQN comprehensively. We also
employ two alternatives of sensors: a laser or lidar scanner
[14] on the robot or a vision system [9] consisting of
multiple cameras mounted in the ceiling to provide object
detection and semantic segmentation. The main contributions
are threefold:

• Training DQNs for collision-free navigation of MRs
following given reference path and reference speed.

• Combining the DQN and MPC to conduct stabler
and smoother (compared to the pure DQN solution)
collision-free reference path tracking with better real-
time performance and obstacle-avoidance ability (com-
pared to the pure MPC solution).

• Designing a switch between the pure MPC solver and
the hybrid solver to improve the overall performance.

An extensive evaluation is provided with multiple metrics
covering different aspects of the trajectory tracking problem.

II. PRELIMINARY

To dispel possible confusion, the word agent is used to
indicate the controlled target, i.e., the AMR. The output
of MPC is the control signal/input to the agent, while the
output of the DQN is its suggested action to the agent. To
distinguish the different states in the MPC and the DQN, x
represents the state in MPC and s represents the state in the
DQN. For convenience, a set of non-negative integers in the
closed interval [a, b], s.t. b > a ≥ 0, is written as N[a,b].

A. Model Predicted Control
Model Predictive Control (MPC) [18] is a constrained-

optimization-based control approach with a receding horizon
fashion. It considers the future states of the agent within a
horizon and computes a series of optimal control inputs in
terms of an objective, which do not violate given constraints.
Given a discrete motion model xk+1 = fMPC(xk,uk) with k
being the time step, where x is the state and u is the control
input, assuming zk = [xk, yk]

T is part of xk indicating the
position of the robot, a general form of MPC problems on
collision-free trajectory tracking with horizon N is,

min
u0:N−1

JN +

N−1∑
k=0

(
||xk − x̃k||2Qx

+ ||uk − ũk||2Qu

)
, (1)

s.t. x0 = x̄, (2)

xk+1 = fMPC(xk,uk), k ∈ N[0,N−1], (3)
uk ∈ Uk, k ∈ N[0,N−1], (4)
zk /∈ O ∪ Dk, k ∈ N[0,N ], (5)

where JN is the terminal cost, Qx and Qu are the penalty
weights for the state and the control input, x̃k and ũk are the

reference state and control input, x̄ is the given initial state,
Uk is the constraint on the control input (normally a box
constraint with min-max limits), and O and Dk are the static
and dynamic obstacle areas respectively. In practice, only the
first control input u0 is used at every time step, which means
an optimization question needs to be solved frequently. If the
optimization space is complex or non-convex, the solving
time can be prolonged and barely predictable.

B. Temporal Difference Reinforcement Learning

An RL task [19] is a decision-making process for an
agent based on rewards received through interaction with an
environment. The goal is to learn a policy that maximizes
the cumulative rewards the agent receives over time. During
the training, the agent explores the environment until the
maximal time is reached or terminal conditions are triggered,
which is called an episode.

A Markov Decision Process (MDP) [19] is a discrete-
time stochastic process to model RL tasks that satisfies the
Markov property. An MDP is defined by (S,A, P,R, γ),
where S is the state set of the environment; A is the action
set of the agent; P is the transition function determining the
probability from one state to another state given an action;
R is the reward function that specifies the reward from one
state to another state by taking an action; and γ ∈ [0, 1]
is the discount factor determining the importance of future
rewards. Define the discounted cumulative rewards as Return
Gk =

∑∞
i=0 γ

kRk+i+1. A stochastic policy π : s → a is
a mapping representing the probability from the state space
to the action space. The optimal policy at a state is the one
with the maximum return, i.e.,

π∗ = argmax
π

Eπ [Gk | Sk = s]︸ ︷︷ ︸
:=Vπ(s)

, (6)

where the expectation is called value V of state s following
policy π. Similarly, the state-action value, also known as the
Q-value is defined as

qπ(s,a) = Eπ [Gk | Sk = s, Ak = a] , (7)

where the value is also determined by the action a at time
step k. According to the Bellman Expectation Equation for
MDPs, the q-value can be written recursively,

qπ(s,a) = Eπ [Rk+1 + γqπ(Sk+1, Ak+1) | Sk = s, Ak = a] .
(8)

Temporal Difference (TD) learning [19] is a type of
RL algorithm that learns by updating the estimate of the
value function based on the difference between expected
and actual rewards received at each time step. Q-learning
[19] is a variant of TD learning, which iteratively maximizes
the Q-value instead of the state value V . Q-learning stores
estimated Q-values Q(s,a) in a look-up table called the Q-
table, and updates the table according to the following rule

Q(s,a)← Q(s,a) + α

[
r + γ max

a′∈A
Q
(
s′,a′)−Q(s,a)

]
,

(9)
where s′ is the state at the next time step, r is the reward at
s′, and α is the learning rate.



C. Deep Q-Learning

Deep Q-learning [20] is the combination of Q-learning
and neural networks. In some environments, there can be
too many states leading to an enormous Q-table, which
is impossible for Q-learning to converge due to time and
hardware limitations. To cope with these high-dimensional
scenarios, neural networks are introduced to replace the
Q-table, which are known as Deep Q-Networks (DQNs).
DQNs have the advantage of being highly efficient since no
enumerating is needed. Deep Q-learning uses the experience
replay technique which is a technique randomly sampling
experiences from a replay buffer to break the correlation
between consecutive samples and improve the stability of the
training. It also uses a copy of the DQN, called the target
network which is periodically updated with the weights of
the current DQN. The target network is used to generate the
target Q-values in the Q-learning update equation.

Deep Q-learning aims to learn the optimal Q-values for
all state-action pairs by minimizing the mean squared error
between the estimated Q-values from the DQN and the target
Q-values from the target network. The loss function to update
the DQN is

Lθ =

[
r + γmax

a′∈A
Q
(
s′,a′; θtarget)−Q(s,a; θ)

]2
, (10)

similarly to (9), where s′ is the state at the next time step, r
is the reward at s′. Moreover, θ represents the parameter for
the DQN and θtarget is the parameter of the target network.

D. Modeling of Obstacles

In this work, static obstacles are modeled as convex
polygons and represented by sets of linear inequalities, as
described in [7]. Let O = ∪nOn be the space of n static
obstacles, assuming that a static obstacle O has E edges,
O = {p ∈ R2 | bi − aT

i p > 0, ∀i ∈ N[1,E]}, where ai, bi
are coefficients defining a half-space.

Dynamic obstacles, such as humans, are modeled by two-
dimensional ellipses and assumed to have constant velocities.
For an ellipse centered at µ = [µx, µy]

T with axes σ =
[σx, σy]

T , a variable ι indicating if a point p = [px, py]
T is

inside the ellipse can be defined as (11). The time-step k is
omitted here for brevity. The indicator is zero outside and
positive inside the ellipse, and its value increases for points
closer to the center µ with a maximum of 1. Formally

ι(p |µ,σ) = max

{
0,

[
1− (

px − µx

σx
)2 − (

py − µy

σy
)2
]}

.

(11)
With the help of the indicator, the area D occupied by Nd

ellipses can be defined as:

D = {p ∈ R2 | ∃ i ∈ N[1,Nd], ι(p|µi,σi) > 0}. (12)

To consider the size of the agent, all obstacles are inflated
with a margin equal to the size of the agent plus an extra
safety margin, as shown in Fig. 2.

III. PROBLEM FORMULATION

For a mobile robot with a discrete motion model xk+1 =
f(xk,uk) and k is the time step, where x ∈ Rnx is the state
and u ∈ Rnu is the control input, f : Rnx × Rnu → Rnx ,
given a reference speed vref and a reference path with k path
nodes, where each node pi = [xi, yi]

T represents a two-
dimensional position and the first node p0 represents the
current location of the robot,

Pref = ⟨p0, p1, . . . , pk⟩, (13)

and a set of no static obstacles O = {O1, O2, . . . , Ono}
and nd dynamic obstacles Dk = {D1

k, D
2
k, . . . , D

nd

k } at time
step k, the task is to conduct collision-free navigation for the
mobile robot to follow the reference path. Assuming zk =
[xk, yk]

T is part of xk indicating the position of the robot,
the collision-free condition at time step k is zk /∈ (O∪Dk).

Note that the set of static obstacles O and the reference
speed vref are assumed to be time-invariant, but they can
update over time. In this paper, we try to solve the problem
using model predictive control for trajectory tracking with
the aid of deep Q-learning which provides a heuristic refer-
ence trajectory to avoid collisions.

IV. OBSTACLE AVOIDANCE WITH MODEL PREDICTIVE
CONTROL

As mentioned in (1), MPC needs reference states and
control inputs to evaluate the objective. In the case of
trajectory tracking, the reference control signal can be the
reference speed vref. The reference states at time step k can
be sampled from the reference path Pref, called the local
reference trajectory T ref

k . A straightforward way to sample
a reference trajectory is to start from the current location
of the agent and sample N steps with the speed vref along
Pref. Note that T ref

k doesn’t consider unexpected obstacles. To
improve the smoothness of control inputs, we also penalize
the acceleration of the agent. The overall objective of the
agent’s states and control signals is JR(k) = ||xk−x̃k||2Qx

+
||uk−ũk||2Qu

+||uk−uk−1||2Qa
. Finally, as suggested in [10],

a soft constraint for dynamic obstacle avoidance is added,

JD(xk) =

Nd∑
n=1

||ι(zk |µn,k,σn,k)||2QD
. (14)

The full MPC formation with the sampling time ∆t, is

min
u0:N−1

||xN − x̃N ||2QN
+

N−1∑
k=0

[JR(k) + JD(xk)] (15)

s.t. x0 = x̄, (16)

xk+1 = fMPC(xk,uk), k ∈ N[0,N−1], (17)
uk ∈ [umin,umax], k ∈ N[0,N−1], (18)
∆uk

∆t
∈ [u̇min, u̇max], k ∈ N[0,N−1], (19)

zk /∈ O ∪ Dk, k ∈ N[0,N ], (20)

where ∆uk = uk − uk−1, uk and ∆uk

∆t are bounded by
the minimal and maximal limitations. Compared to (1), the
penalty on the acceleration and the soft constraint of dynamic
obstacle avoidance are augmented in (15).



Fig. 2. The action and state spaces of the DQN agent. Subscript k is
omitted for detailed state variables. There are eight alternative actions and
each action is an acceleration in that direction. The state includes two parts.
The internal state sint is composed of 1-dimensional speed, 1-dimensional
angular velocity, 3-dimensional closest-point-on-path indication, and 9-
dimensional upcoming-path-nodes indication. The external state sext can
be either the laser/lidar detection or the visual detection from cameras.

V. REFERENCE TRAJECTORY FROM DEEP Q-LEARNING

The MPC method defined in (15)-(20) can handle most
situations when the reference path is not blocked. However,
if the path is blocked, the solver may need a longer time
to iteratively calculate a feasible numeric solution or fails
totally. This is because the local reference trajectory is not
flexible to dynamic environments and the burden to find a
feasible detour lies on MPC. In this section, we introduce
a method to generate new reference trajectories via deep Q-
learning. The action, state, and reward in the deep Q-learning
method are defined in the following subsections (the details
of the action and state spaces are also shown in Fig. 2).

A. State Observation

The DQN state sk at time step k includes the internal
observation sint

k and the external observation sext
k . The sub-

script k is omitted if there is no ambiguity. The internal
observation sint ∈ R14 contains the previous speed vk−1

and angular velocity ωk−1 of the agent, the closest-point-on-
path indication sclose to tell the agent its relative location to
the reference path, and the upcoming-path-nodes indication
spath to tell the agent the relative locations of upcoming path
nodes. Specifically, sclose = [cos(βclose), sin(βclose), d̄close]T ,
where βclose is the angle between the agent’s heading and the
direction from the agent to the closest point on the reference
path, and d̄close is the normalized distance [14] of the distance
dclose from the agent to the closest point on the reference path,
as in (21) where dmax is a saturation constant functioning as
a soft distance cut-off. Similarly, spath is angles and distances
from the agent to the upcoming path nodes. We choose three
upcoming path nodes thus spath ∈ R9.

d̄ = 2 · (1 + e−2d/dmax)−1 − 1. (21)

The external observation sext can be either rays-and-
sectors observation (from laser/lidar scanners) or image ob-
servation (from cameras). The rays-and-sectors observation
is an improvement based on the ray observation. A contradic-
tion of the ray observation [14] is that if the detecting rays are
not sufficiently dense, small obstacles may be invisible to the
agent; if the number of rays is too large, the training of DQNs
may be unstable [15]. The rays-and-sectors observation [15]
clusters several rays as a sector whose range is determined

by the closest distance of rays belonging to this sector. To
consider dynamic obstacles, the detection is concatenated
with the previous detection from ∆k time steps ago.

The other option is to use the cameras in the ceiling.
The vision system can provide semantic segmentation of
accessible areas and static obstacles, and also detect moving
objects including the agent and other dynamic obstacles. As
shown in Fig. 2, similar to [21], an image centered at the
agent’s position is cropped from the camera detection. The
image has three channels: a distance map to the agent where
each pixel is the distance to the agent, and two occupancy
grid maps where one map is in the current time and the other
one is from ∆k time steps back. In Fig. 2, the image from
the camera detection is such a three-channel image, where
the two static obstacles are marked by red dashed blocks, the
green shadow represents the current position of the elliptical
dynamic obstacle, the red shadow represents the position of
the elliptical dynamic obstacle ∆k = 5 time steps ago.

B. Action Space

Since DQNs have finite discrete action spaces, one choice
is to preset some action modes [15], [17]. In this work, to
have more velocity options, the action a ∈ {0, 1, . . . , 8}
is the combination of the linear acceleration {−1, 0, 1}
and angular acceleration {−1, 0, 1}, as described in Fig. 2.
In options of linear acceleration, −1 means the maximal
deceleration, 0 means constant velocity, and 1 means the
maximal acceleration. In options of angular acceleration, −1
means turning left with the maximal angular acceleration, 0
means keeping the heading, and 1 means turning right with
the maximal angular acceleration.

C. Reward Function

The selection of the reward function is crucial in RL,
which should ensure the agent follows the given path as
much as possible and reach the goal without collisions. As in
[14], we also select the path-progress reward Rpath, the reach-
goal reward Rgoal, and the negative collision reward Rcol.
In addition, a path-deviation penalty Rdev and a speeding
penalty Rspeed are used. The terminal condition for an episode
is that the maximal time is reached or a collision happens.
The overall reward composition at time step k is:

Rk = Rcol
k +Rgoal

k +Rpath
k +Rspeed

k +Rdev
k . (22)

Among the reward terms,

Rcol
k =

{
−λcol, if collision happens
0, otherwise

, (23)

Rgoal
k =

{
λgoal, if the agent reaches the goal
0, otherwise

, (24)

Rpath
k = λpath(lk − lk−1), (25)

Rspeed
k = λspeed max(0, (vk − vref)), (26)

Rdev
k = −λdev(dclose

k )2, (27)

where all λs are corresponding positive reward weights, lk
the progress measured by the length from the start point to



Fig. 3. Static obstacles tested in Scene 1. The gray area is the area where
different types of obstacles are placed. Under the map, six obstacles are
shown with the agent beside them to compare the size.

the current closest point to the agent on the reference path,
vk is the current speed, dclose

k is the closest distance from the
agent to the reference path as previously introduced.

D. Reference Trajectory Generation and Switch Trick

The output of DQNs is the Q-values of all action indices.
During inference, the action with the largest Q-value is
selected, which means a deterministic policy. An action index
represents a pair of linear and angular accelerations. The
corresponding speed vDQN and angular velocity ωDQN of the
agent can be obtained by integrating the action from the
DQN. The produced action can be interpreted as a tendency
that the agent should follow to maximize the reward, i.e.,
progressing to the goal and following the reference path
without collisions. This can be a reference to MPC when the
agent approaches an obstacle by indicating a local trajectory
to evade collisions. To generate a local trajectory, the agent
is simulated to run N steps. In the first step, the original
control signal uDQN

0 = [vDQN, ωDQN]T generated by the
DQN is used. For the rest steps, to improve stability, an
extra reference speed v′ref is used instead. As for the angular
velocity, a decay constant λdecay is multiplied at every step.
The overall control inputs are uDQN

0 at time step 0 and
uDQN
k = [v′ref, (λ

decay)kωDQN]T at time step k > 0. With
this control sequence, a new local reference trajectory T ′

k is
obtained through the agent’s motion model.

For MPC, there are now two reference trajectories to
choose from, the original T ref by sampling the reference path
and the new T ′ from the DQN. The original one is obviously
stable but does not handle changes in the environment; the
new one considers new obstacles in the environment but is
unstable. For better comprehensive performance, we combine
them in a way that MPC can switch between them. When
the reference path is not blocked, MPC uses the original
reference trajectory T ref until any positions of T ref enter an
occupied area and MPC switches to the new reference T ′.
When MPC uses T ′, the condition to detach and reuse T ref

is that no position of T ref is in occupied areas. In reality, the
switch condition can be easily detected by the vision system.
If only the laser/lidar scanner is available, this needs to be
done by analyzing beams pointing to the reference path. In
this work, we assume the vision system is provided to aid.

Fig. 4. Scene 1 with a dynamic obstacle: (1) coming to the agent face-to-
face (from the right side to the left side, which is the opposite of the agent);
(2) crossing the lane from one side (from the bottom to the top).

Fig. 5. Turning cases of Scene 2. The black arrows indicate desired turning
directions. A small obstacle is placed at the turning corner in each case.

VI. IMPLEMENTATION

All experiments are conducted on Intel i7-9750H, while
the neural network inferences are on NVIDIA GTX 1650
Max-Q. The code of this work is available online 1. The MPC
part is implemented by the real-time OpEn optimization
engine [22]. The obstacle avoidance is solved by the penalty
methods [10]. The DQN training is based on the Stable-
Baseline3 library [23] with the default DQN architectures.
For the laser/lidar scanner DQN, since the input state s =
[(sint)T , (sL)T ]T is a vector, the architecture is a two-layers
fully-connected net with 16 neurons in each layer. For the
vision DQN, the input image (cropped from 18 × 18 unit
area, compressed to 54 × 54 pixels) is converted into a
latent vector of size 256 by a convolutional neural network
with the architecture described in [24]; the latent vector is
concatenated with sint and the entire vector is fed into a two-
layers fully-connected net with 64 neurons in each layer.

To train the reinforcement learning agent, two kinds of
training scenes are designed to increase the generality of
the agent, which are fixed scenes and random scenes. Fixed
scenes are manually created with static and dynamic obsta-
cles, which are available in our provided code. The random
scenes contain three static obstacles with reasonable random
varying sizes at random locations and a random number
of dynamic obstacles moving back and forth on randomly
generated straight paths. In each random scene, the agent
is given a random start point from one side of the map to
the other side at a random goal point. The reference path in
each random scene is generated through the visibility graph
and A* algorithm as in [25]. For the hyperparameters used
during the training, the discount rate is γ = 0.98, the learning
rate α = 0.0001, the exploration fraction which means the
probability of taking a random action instead of the action
suggested by the policy during training is 0.2, the number

1https://github.com/Woodenonez/TrajTrack_MPCnDQN_RLBoost

https://github.com/Woodenonez/TrajTrack_MPCnDQN_RLBoost


of gradient steps is the same as the number of steps done in
the environment during the rollout, and the others are default
values in the Stable-Baseline3 library [23].

VII. USE CASES AND EVALUATION

To evaluate the proposed approach, multiple use cases are
designed. Some of the videos are available online 2, and
the others are available in the provided code. Generally, two
scenes are presented. The first scene is a straight path in a
vehicle lane with different static obstacles, as in Fig. 3, or
dynamic obstacles, as in Fig. 4. The other scene is a group
of different turning cases with an additional static obstacle
at the turning corner. Three turning scenarios, as shown in
Fig. 5, are evaluated: right turn, sharp turn, and U-turn.

A. Use Cases

In the first scene, four kinds of obstacles are tested. The
first three are static obstacles corresponding to Fig. 3. The
last one is a dynamic obstacle as illustrated in Fig. 4.

1) Single rectangular obstacle of (a) medium size (com-
parable size to the agent) and (b) large size (about four
times larger than the agent) respectively.

2) Two rectangular obstacles in stagger position with the
first one being (c) small (slightly blocking the path) and
(d) large (extensively blocking the path) respectively.

3) Single non-convex (U-shape) obstacle of (e) small size
(shallow) and (f) big size (deep) respectively.

4) Single dynamic obstacle, as shown in Fig. 4, coming
from the front and side directions respectively.

In the second scene, three types of turns are considered as in
Fig. 5: (1) orthogonal right turn; (2) sharp turn; (3) U-turn.

B. Evaluation

To evaluate use cases, a comprehensive analysis is made
to compare different approaches. Six metrics are included:

• Computation time. The computation time at each step
reflects the real-time property. The mean, maximum,
and medium computation time in a run is recorded. The
computation time should be as small as possible.

• Deviation (distance to the reference path). The deviation
from the reference path should be as small as possible if
the path is free. When there are obstacles blocking the
path, it is difficult to tell if this metric should be large
or not since it depends on the application and policy.

• Action smoothness. The smoothness calculates the sec-
ond derivative of the action. The mean value is taken
for a run. In general, we hope the action is as smooth
as possible, which means small values in this metric.

• Clearance (closest distance to obstacles). The agent
should keep a reasonable distance from the obstacle,
depending on the application and policy.

• Finish time. The agent should finish the journey as
quickly as possible while not violating other conditions.

• Success rate (of 50 runs). The success rate should be
as high as possible. In the evaluation, we do not show
results if the success rate is below 30%.

2https://www.shorturl.at/sHOV7

The evaluations of Scene 1 and 2 are shown in TABLE I,
where L means the laser/lidar version of the DQN and V
means the vision version of the DQN. HYB means the hybrid
of the MPC and the DQN. We can observe that the HYB-L
always gives a much lower computation time, especially for
the worst-case computation time. Except for the right turn
case in Scene 2, HYB-L always has a 100% success rate
even in the cases with non-convex obstacles, where the pure
MPC solver is stuck at the local minimum. HYB-V is less
stable, which we believe is due to the limited resolution of the
image observation and the unstable training process of the
convolutional neural network. Compared to the pure DQN
versions, the hybrid versions give much better performance in
terms of action smoothness and success rate. One advantage
of HYB-V is reflected in the right turn case, where HYB-
V has a better success rate compared to HYB-L. This is
because laser/lidar scanners cannot provide environmental
information after the turn, while visual detection can.

VIII. CONCLUSION

In this study, we present a novel approach that combines
deep reinforcement learning with model predictive control
for trajectory tracking in mobile robots. We train two distinct
deep Q-network variants to accommodate either laser/lidar
observations or visual observations. A series of use cases are
designed to evaluate the performance of different method-
ologies across various dimensions. The experimental results
show that the integration of DQN and MPC outperforms
both the standalone MPC and standalone DQN strategies. We
conclude that this research offers valuable insights into the
synergy between machine learning techniques and traditional
control methods. Future work will focus on improving the
stability of the vision-based DQN and implementing the
proposed approach in real-world systems.
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