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Abstract— Efficient motion planning and control for multiple
mobile robots in industrial automation and indoor logistics face
challenges such as trajectory generation and collision avoidance
in complex environments. We propose a hybrid, sequential
method combining Bird’s-Eye-View vision-based continuous
Deep Reinforcement Learning (DRL) with Model Predictive
Control (MPC). DRL generates candidate trajectories in com-
plex environments, while MPC refines these trajectories to
ensure adherence to kinematic and dynamic constraints of the
robot, as well as constraints modeling humans’ current and
predicted future positions. In this study, the DRL utilizes a Deep
Deterministic Policy Gradient model for trajectory generation,
demonstrating its capability to navigate non-convex obstacles,
a task that might pose challenges for MPC. We demonstrate
that the proposed hybrid DRL-MPC model performs favorably
in handling new scenarios, computational efficiency, time to
destination, and adaptability to complex multi-robot situations
when compared to pure DRL or pure MPC approaches.

I. INTRODUCTION

In industrial indoor logistics, Autonomous Mobile Robots
(AMRs) can operate alongside humans and other manually
operated vehicles. Though tasks and routes are typically
pre-scheduled, AMRs may encounter unforeseen situations
during operation and have to quickly adapt to them. In
this work, we aim to enable AMRs to navigate their paths
precisely and efficiently while adapting to avoid static and
dynamic obstacles. We assume a permanent ceiling-mounted
vision system [1] is given to provide real-time updates of
the current state of the workspace, which can be further
processed as Bird’s-Eye-View (BEV) occupancy grid images.

Model Predictive Control (MPC) is a recognized strategy
for planning, tracking, and controlling the movement of
mobile robots with references spanning from single robot
applications [2], [3] to fleets of robots [4], [5], [6]. In MPC,
trajectory planning, tracking, and control are treated as an op-
timization problem employing a receding horizon approach,
with paths and obstacles serving as various constraints.
However, there are still challenges for stable real-time im-
plementation of MPC, such as significant computational
requirements, variability in time for solution convergence,
and the difficulty of identifying feasible paths around non-
convex obstacles.

As a combination of deep learning and reinforcement
learning, Deep Reinforcement Learning (DRL) [7] presents
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a trajectory-planning alternative with constant, predictable
computational costs, processing images directly to generate
trajectories in complex, dynamic environments. Despite po-
tential robustness issues [8], [9] and the need for extensive
offline training, DRL, particularly the Deep Deterministic
Policy Gradient (DDPG) algorithm [10], offers advantages in
handling continuous action spaces for control tasks, showing
promise across various applications in trajectory planning,
robotics, and control [11], [12], [13].

In our previous work [14], a hybrid DRL-MPC method
is introduced to address the limitations of standalone tech-
niques, thereby enhancing performance beyond that of pure
DRL or MPC solutions. This paper advances that approach
by integrating it with a DDPG model featuring a continuous
action space, aiming to improve the hybrid strategy’s reliabil-
ity and robustness. We focus on planning improved reference
trajectories by transitioning to a continuous action space and
refining the training process for more effective use of the
BEV vision input, which the previous hybrid approach strug-
gled with. Additionally, we extend its application to multi-
agent scenarios through the distributed execution of MPC
controllers, achieving promising results without specifically
training the DDPG model for multi-robot trajectory planning.
The main contributions of the study are threefold:

• Designing a BEV vision-based DDPG model for trajectory
planning and collision avoidance in dynamic environments.

• Enhancing the hybrid approach by combining DDPG and
MPC for both single and multi-robot scenarios.

• Evaluating the improved method across various scenarios
involving both single and multiple agents.

II. PRELIMINARIES

A. Model Predictive Control

To solve a constrained Optimal Control Problem (OCP),
Model Predictive Control (MPC) [15] estimates the future
behavior of the control target within a predictive horizon
and makes informed decisions regarding an objective, while
complying with given constraints. In particular, given a
discrete motion model xk+1 = f(xk,uk), where xk and
uk are the state and control input at time step k, assuming
zk = [xk, yk]

⊤ is part of xk indicating the planar position
of the robot, x̃k and ũk are the references for x and u, x̄
is the initial state, Uk is the constraint on the control input,
a general trajectory tracking OCP with horizon N can be



formed as,

min
u0:N−1

JN +

N−1∑
k=0

(
||xk − x̃k||2Qx

+ ||uk − ũk||2Qu

)
, (1)

s.t. x0 = x̄, (2)
xk+1 = f(xk,uk), k ∈ N[0,N−1], (3)
uk ∈ Uk, k ∈ N[0,N−1], (4)
zk /∈ O ∪ Dk, k ∈ N[0,N ], (5)

where JN is the terminal cost, Qx and Qu are the penalty
weights, and O and Dk are the static and dynamic obstacle
areas respectively. For multi-robot cases, other robots can be
perceived as dynamic obstacles for the ego one. The notation
N[a,b] means the integer set from a to b.

For real-time tasks, only the first action u0 is applied to the
robot. The OCP is reconsidered with a new set of parameters
at each time step, which is challenging and high-demanding
in runtime if the environment is complex.

B. Deep Reinforcement Learning

Markov Decision Processes (MDPs), as the foundation of
Reinforcement Learning (RL) [16], are discrete models for
sequential decision-making. An MDP is defined by a set of
states S, actions A, the transition space P describing the
transitions among states, the reward R of taking an action
at a state, and a discount factor γ balancing the immediate
versus distant rewards. A policy π is a strategy of action
selection given states and the goal in RL is to find the optimal
policy π∗ maximizing the cumulative discounted reward, or
Return, Gk =

∑∞
i=0 γ

kRk+i+1 at time k. The agent learns
through exploring the state space in a trial-and-error fashion.
Q-learning [17] is a well-known RL algorithm, where an
action-value function is approximated

qπ(s,a) = Eπ [Gk | Sk = s, Ak = a] , (6)

and the values Q(s,a) are stored in a look-up Q-table. The
agent explores the environment by following a ϵ−greedy
policy per step, i.e., taking the action with the largest Gk

with probability (1 − ϵ) and taking a random action with
probability ϵ. Meanwhile, the Q-values are updated:

Q(s,a)←Q(s,a)+η

[
R(s,a)+γmax

a′∈A
Q
(
s′,a′)−Q(s,a)

]
, (7)

where s′ is the state at the next time step, R(s,a) is the
reward at s′ from taking action a in state s, and η is the
learning rate. After convergence of Q, the optimal policy can
be found by

π∗(sk) = argmax
a

Qπ(sk,a). (8)

Q-learning’s reliance on Q-tables limits it to discrete state
and action spaces. DRL combines RL with neural networks
for function approximation, exemplified by DQN [18], which
extends Q-learning to continuous state spaces.

In continuous action spaces, Q-learning needs to solve (8)
via iterative optimization or discretize the action domain,

which is unsuitable in most control applications [10]. Alter-
natively, policy gradient methods [16] aim to learn a policy
π(s|θπ) parameterized by θπ , which is updated by taking a
gradient ascent step with step length α:

θπ
k+1 = θπ

k + α∇̂θπ
k
L, (9)

where ∇̂θπ
k
L is an approximation of the gradient of the

performance measure L with respect to θπ
k . Within policy

gradient methods, the actor-critic approach [16] learns both
a policy (actor) and a value function (critic). Deep Determin-
istic Policy Gradient (DDPG) uses a traditional actor-critic
structure with neural networks for both the actor and the
critic with parameters θπ and θQ. The actor is updated by

∇θπL = E
[
∇aQ(sk,a|θQ)|a=π(sk)∇θππ(sk|θπ)

]
(10)

and the critic is updated by minimizing the loss

L(θQ) = E
[(
Q(sk,ak|θQ)− Ḡk

)2]
, (11)

Ḡk = R(sk,ak) + γQ(sk+1, π(sk+1|θπ)|θQ). (12)

DDPG uses target networks [18] for both the actor and
critic to increase convergence properties. The parameters θ

′

of target networks are updated using a soft update θ
′ ←

(1− τ)θ
′
+ τθ with τ ≪ 1.

III. OBSTACLE AVOIDANCE WITH OPTIMAL CONTROL

In this section, we define the problem of collision-free
navigation for a fleet of AMRs and present the optimal
control formulation for this problem.

A. Problem Formulation

Consider the navigation problem of a fleet of AMRs with
configurations Rk = {R(1)

k , R
(2)
k , . . . , R

(nr)
k }, where R

(i)
k is

the configuration of the i-th AMR at time step k adhering
to the discrete-time motion model x

(i)
k+1 = f(x

(i)
k ,u

(i)
k ),

with x(i) being the state vector, and u(i) being the control
input. For any AMR in the fleet, the goal while not idle
is to follow a predefined path P ref = {p0,p1, . . . ,pM}
composed of M waypoints, where pj ∈ R2 represents
the j-th waypoint, with p0 as the start and pM as the
target positions. The workspace of AMRs contains no static
obstacles O = {O(1), O(2), . . . , O(no)} and nd dynamic
obstacles Dk = {D(1)

k , D
(2)
k , . . . , D

(nd)
k } at time step k. Each

AMR should navigate from the start to the target position at
a predefined reference speed vref , whilst ensuring collision-
free movement. Collision-free navigation for any robot i

requires that its position z
(i)
k ∈ R2 does not intersect with

the spaces of obstacles or other AMRs at any time step k,
i.e., z(i)

k ̸∈
(
O ∪Dk ∪ (Rk − {R(i)

k })
)
, ∀k.

B. Modelling of Obstacles

To be added to the constraints of the MPC problem,
obstacles are modeled mathematically as described in [19]. A
static obstacle O(i) is modeled as a convex polygon defined
as an intersection of half-spaces. Thus, the static obstacle
area O = ∪nO(n) is the union of all static obstacles.



For dynamic obstacles, such as pedestrians, ellipses serve
as their representation to capture their motion patterns as in
[1]. To judge whether a point p = [px, py]

⊤ resides within
an ellipse with the center µ = [µx, µy]

⊤ and axes σ =
[σx, σy]

⊤, an indicator ι ≥ 0 is employed as in (13). The
notation [x]+ is the compact form of max(0, x).

ι(p |µ,σ) =
[
1− (

px − µx

σx
)2 − (

py − µy

σy
)2
]
+

(13)

Based on the indicator, the dynamic obstacle area composed
of Nd obstacles can be defined as

D = {p ∈ R2 | ∃ i ∈ N[1,Nd], ι(p|µi,σi) > 0}. (14)

Since robots are simplified as points during the computa-
tion of control actions, all obstacles are padded with the size
of the robot plus an extra margin for safety.

C. Optimal Control Formulation

The complete MPC formulation is similar to [14] with
an extension of fleet collision avoidance. To safely interact
with other robots, the ego robot can regard them as dynamic
obstacles. However, this results in the allocation of compu-
tational resources potentially taking precedence over other
uncontrolled dynamic obstacles. In industrial environments,
mobile robots in a fleet have known size, whose actions
and predicted states are determined by MPC. Therefore, fleet
collision avoidance is implemented by adding a cost term in
the objective function preventing any two robots from being
closer than a safe distance. The total formulation of the MPC
problem with the sampling time ∆t is

min
u0:N−1

||xN − x̃N ||2QN

+

N−1∑
k=0

JR(k) + nr∑
j=1

JF (zk, ẑ
(j)
k )

 (15)

s.t. x0 = x̄, (16)
xk+1 = f(xk,uk), k ∈ N[0,N−1], (17)
uk ∈ [umin,umax], k ∈ N[0,N−1], (18)
uk − uk−1

∆t
∈ [u̇min, u̇max], k ∈ N[0,N−1], (19)

zk /∈ O ∪ Dk, k ∈ N[0,N ], (20)

where all Qs are penalty parameters; u−1 is the action from
the last step if it exists, otherwise it is a zero vector. Velocity
and acceleration are limited by box constraints as in (18) and
(19). In the objective function, JR(k) = ||xk − x̃k||2Qx

+
||uk − ũk||2Qu

+ ||uk − uk−1||2Qa
is the reference deviation

cost for the robot, and JF (zk, ẑ
(j)
k ) as defined in (21) is the

fleet collision cost between the ego robot and robot j.

JF (z
(i)
k , ẑ

(j)
k ) =

[
Qf ·

(
dfleet − ||z(i)

k − ẑ
(j)
k ||2

)]
+
. (21)

Note that in (21), dfleet is the safe distance between any two
robots and the penalty weight Qf is zero if i = j.

IV. REFERENCE TRAJECTORY FROM DEEP
REINFORCEMENT LEARNING

In this section, the components for the reference trajectory
generation of DDPG are presented. The approach is similar
to [14] with some modifications to accommodate moving
from a discrete to a continuous action space.

A. State Observation
The state observation sk at time step k is divided into the

internal observations sint
k , and external observation sext

k . The
internal observation can be seen in (22),

sint
k = [vk−1, ωk−1, sclose

k , spath
k ] ∈ R14. (22)

Specifically, vk−1 and ωk−1 are speed and angular velocity
at k − 1, and they are normalized in the range [−1, 1].
The next component sclose

k = [cos(βclose), sin(βclose), d̄close]
where βclose is the relative angle and d̄close is the normalized
distance to the closest point on the reference path relative to
the agent. Finally, spath

k ∈ R9 consists of three closest future
waypoints on the reference path defined similarly as in sclose

k .
The external observation sext ∈ R3×54×54 is modeled as

an image with three channels, where two channels consist
of occupancy grids and one channel represents a distance
field to locate the agent in the image. The premise is that
the external ceiling-mounted camera system can produce
occupancy grids through semantic segmentation and object
tracking. One occupancy grid of the current time step k and
one grid from ∆k = 5 time steps ago to provide temporal
information of dynamic obstacles. The occupancy grids are
cropped images from the global camera system, rotated, and
translated such that the agent’s heading is consistent.

B. Action space
The actions generated by the DDPG model are continuous

acceleration and angular acceleration ak, ω̇k ∈ [−1, 1]. To
comply with the AMR kinematics defined in [4], ω̇k is
rescaled to be in the range of [−3, 3].

C. Reward Function
One of the hurdles of DRL is the definition of reward

functions, in terms of design and tuning parameters to
promote a specific desired behavior for the problem at hand
[20]. In this work, the reward function is similar to [14]:

R = Rgoal +Rcollision +Rpath +Rspeed +Rdev, (23)

where

Rgoal
k =

{
λgoal, goal reached at time-step k
0, otherwise (24a)

Rcol
k =

{
−λcol, collision at time-step k
0, otherwise (24b)

Rpath
k = λpath(lk − lk−1), (24c)

Rspeed
k = −λspeedmax(0, (vk − vref

k ))∆t, (24d)

Rdev
k = −λdev(dclose

k )2∆t. (24e)

All terms in (23) are weighted with positive scalars λ,
and lk is the traversed distance of the AMR projected
perpendicularly on the reference path at k.



D. Reference Trajectory Generation

A new local reference trajectory T ′ is generated by the
DDPG agent, to cope with scenarios when an object is
blocking the MPCs original reference path T ref. The actions
from the agent’s learned policy, ak and ω̇, is integrated using
the motion model:

xk+1

yk+1

vk+1

φk+1

ωk+1

 =


xk + vk cosφk∆t
yk + vk sinφk∆t

vk + ak∆t
φk + ωk∆t
ωk + ω̇k∆t

 . (25)

Trajectory T ′ is generated by simulating the DDPG model
for N steps and integrating the actions according to (25).
To increase stability of T ′ only the first control input uDDPG

0

is used in the first time step. The consecutive control inputs
use an additional velocity reference v′ref and a decay constant
λdecay such that uDDPG

k = [v′ref, (λ
decay)kωDDPG]T , ∀k > 0.

When and where to use T ref or T ′ is determined by a
switch, provided in the vision system [14], with parameter
adjustments to handle multiple robots. To concisely introduce
the switch, T ref is used when no object is blocking P ref (as
defined in III-A) in the vicinity of the AMR according to the
lookahead parameter ∆d, which defines at which distance
from the object blocking P ref the switch from T ref and T ′

should occur. The switch is activated as long as there are
objects on the section of P ref between the closest point
on P ref relative to the AMR and ∆d along the path. For
the multi-robot case, ∆d has to be adjusted to a longer
horizon to be able to handle the added complexity due to
the simultaneous navigation of multiple AMRs.

V. IMPLEMENTATION

The system is evaluated using an Intel i7-13700H with
NVIDIA RTX 3060 and is documented online1. Built on
[14], we use the OpEn Engine [21] for MPC and Stable
Baselines3 [22] for DRL, enhancing DDPG with a Prioritized
Experience Replay Buffer [23]. The architecture includes
dual feature extractors for actor and critic networks to
process internal (sint) and external (sext) states, employing
the convolutional neural network [18] for images. Images
are converted into a 256-length vector, merged with sint for
the policy network, which diverges from [10].

The training environment is similar to [14] with data split
between random and twelve manually designed fixed scenes
for evaluation. Fixed scenes incorporate randomization in
start positions, obstacle sizes, and speed of dynamic obsta-
cles, while the random scenes generate varying start and goal
points, obstacles, and L- or U-shaped non-convex barriers.
The initial reference paths are determined via visibility
graphs and the A∗ algorithm.

The model is trained using Ornstein-Uhlenbeck action
noise [10], soft update factor τ = 0.01, discount factor
γ = 0.98, and learning rate α = 10−4. A delayed update
of the target network is used as in [18]. The target network

1https://github.com/kristianceder/DRL-Traj-Planner

Fig. 1. Scenes for single-agent evaluation [14]. Scene 1 includes three types
of static obstacles and one dynamic obstacle scenario. Scene 2 assesses the
turning performance of AMRs with unexpected obstacles.

is updated every fourth episode and the actor and critic
networks are trained using as many gradient steps as in the
environment over an episode. To evaluate and checkpoint
the model during training, the model is deterministically
evaluated for 32 episodes at a fixed interval during training
to save the best model.

Training multiple agents operating in a shared environment
is complex and resource-intensive. Centralizing training ne-
cessitates a shared experience buffer [24], complicating the
model and hindering scalability. Furthermore, a fluctuating
number of agents during runtime complicates setting up
the training environment. To address these challenges, our
training is distributed, mirroring single-agent training setups;
agents are trained independently and other agents are treated
as dynamic obstacles concerning each other during operation.
This simplification reduces complexity at the expense of
potential optimality in decisions. Despite this, evaluations
show emergent cooperative behaviors among agents, notably
with MPC support, demonstrating the approach’s effective-
ness despite its simplifications.

VI. EVALUATION

As this work aims to extend into a multi-robot setting,
the experiment is divided into single- and multi-robot cases.
Scenes 1 and 2 are for single-agent evaluation, while Scenes
3-5 are for multi-agent evaluation. Links to videos of evalu-
ations are available in the code repository.

A. Single-agent

To compare the DDPG model with the previous work and
DQN implementation, it is evaluated on the same scenes as
in [14], illustrated in Fig. 1.

1) Use Cases: The first scene examines the agent’s ability
to avoid unexpected obstacles along a straight path, featuring
static objects of varying size and shape (a, b, and c) and a
dynamic obstacle (d) in a collision course. The second scene

https://github.com/kristianceder/DRL-Traj-Planner


TABLE I
EVALUATION RESULTS FOR A SINGLE AGENT (AVERAGE OVER 50 RUNS). RESULTS WITH SUCCESS RATES UNDER 30% HAVE BEEN OMITTED FOR

BREVITY. NOTABLY, THE PROPOSED METHOD, HYB-DDPG , ACHIEVES A 100% SUCCESS RATE ACROSS ALL SCENARIOS.

Scene Obstacle
type Method

Computation time (ms/step) Deviation (m) Action smoothness Other

mean max std mean max speed angular
speed

finish
time step

success
rate (%)

Scene 1

(a)
Rectangular

obstacle

MPC 29.03 94.11 24.51 0.54 1.94 0.04 0.03 76 100

DDPG 0.77 10.41 7.78 1.02 1.98 0.08 0.61 73 100

HYB-DQN-V 23.07 240.46 45.22 0.91 2.11 0.03 0.1 81 100

HYB-DDPG 11.94 49.74 8.54 0.9 2.23 0.02 0.06 76 100

(b)
Two obstacles

HYB-DQN-V 20.18 109.7 18.39 1.0 2.68 0.04 0.06 98 100

HYB-DDPG 17.38 86.21 14.31 0.96 2.62 0.03 0.05 97 100

(c)
U-shape obstacle

DDPG 0.79 10.65 7.85 0.98 1.91 0.08 0.58 74 100

HYB-DQN-V 93.49 1019.9 254.09 0.84 2.93 0.09 0.16 118 40

HYB-DDPG 15.74 99.04 17.95 0.87 2.18 0.02 0.07 75 100

(d)
Dynamic obstacle

(face-to-face)

MPC 16.07 129.18 25.02 0.44 1.69 0.03 0.04 69 100

DDPG 0.82 10.96 7.95 0.74 1.94 0.08 0.48 77 98

HYB-DDPG 11.13 69.7 13.01 0.9 2.85 0.02 0.05 79 100

Scene 2

(e)
Sharp turn

with an obstacle

DQN-V 0.69 10.74 5.49 0.87 1.44 0.19 0.7 150 78

DDPG 0.74 10.61 5.35 0.53 1.37 0.09 0.56 158 96

HYB-DQN-V 11.8 135.32 15.95 0.49 1.8 0.02 0.04 149 100

HYB-DDPG 14.82 98.26 15.47 0.43 1.63 0.01 0.03 151 100

(f)
U-turn

with an obstacle

DQN-V 0.75 10.48 7.80 0.42 0.87 0.17 0.67 149 40

DDPG 0.73 10.48 5.00 0.63 1.05 0.13 0.51 169 74

HYB-DQN-V 14.19 99.66 15.10 0.43 1.67 0.02 0.03 148 100

HYB-DDPG 11.91 75.17 11.80 0.4 1.42 0.02 0.02 147 100

focuses on maneuverability through a sharp turn (e) and a
U-turn (f), each with a static obstacle on the course.

2) Results: The model’s performance is gauged via these
metrics:

• Computation time: The mean, maximum, and standard
deviation (std) of computation times across models are
recorded, aiming for lower values.

• Deviation: The mean and maximum distances from the
reference path are measured, with smaller deviations
indicating better accuracy.

• Action smoothness: Smoothness is calculated as the
mean of the approximated jerk of the AMR’s speed and
angular speed. Lower values indicate smoother actions,
which are preferable for practical AMR applications.

• Finish time step: The number of steps needed to
complete the evaluation. Consistency across models is
desired, as large variances suggest significant deviations
from the intended speed.

• Success rate: The percentage of successful runs (which
is defined as the robot reaching the goal without any
collision) and total runs of a given scene.

In the evaluation, pure MPC and DDPG methods are the
baseline, and we also compare with the image-based DQN
(DQN-V) and hybrid MPC-DQN (HYB-DQN-V) approaches
[14]. For a fair comparison, all methods are tested across 50
episodes on identical hardware, with outcomes detailed in
Table I (cases with success rates under 30% are discarded).
The evaluation of the dynamic obstacle was performed using
a larger ∆d compared to the other test cases to enable
the DDPG model to generate a reference trajectory for
the hybrid model more consistent with the DDPG model’s

trajectory. Table I highlights that the image-based DDPG
hybrid model (HYB-DDPG) achieved 100% in all scenarios,
significantly outperforming the baseline and DQN-based
algorithms. Despite challenges in certain tests, the DDPG
model effectively supported HYB-DDPG, offering viable ref-
erence trajectories where both MPC and DDPG individually
falter. The occasional shortfall of the DDPG model could be
attributed to training data gaps and low image resolution [14].
Nonetheless, HYB-DDPG reduces computation times versus
MPC, albeit with an increase in completion times attributed
to DDPG’s cautious approach, which resulted in an improved
success rate.

B. Multi-agent

In the multiple-robot simulation, three scenarios are de-
vised to examine the potential safety risk and inefficiency
caused by unexpected non-convexity or circular wait. The
circular wait appears because each agent is independently
adapting to the others, which is a natural drawback of dis-
tributed training. However, as mentioned, this trade-off earns
simplicity in modeling, training, and inferencing. Meanwhile,
by combining DRL with MPC which has the information of
decisions of other robots, more stable cooperative behaviors
emerge among robots.

1) Use Cases: The following scenarios are designed to
showcase the superiority of the proposed approach, which
are visualized in Fig. 2:
• Scene 3 - Alternative for encounter avoidance: Two robots

proceed in opposite directions through a narrow corridor.
For each robot, the other one and the environment to-
gether form a nonconvex barrier. Initial conditions prevent
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Fig. 2. Scenes for multi-agent evaluation. Circles filled with different colors stand for different robots. Polygons represented by red lines are the original
obstacles while red dashed lines are padded obstacles. Black dashed lines are reference paths. Colored lines are traversed trajectories of corresponding
robots. Small hollow circles are original reference trajectories while hollow squares in the HYB-DDPG case are RL reference. Crosses mark the actual
reference followed by the robot in the HYB-DDPG case.

MPC HYB-DDPGDDPG

Fig. 3. Evaluation of the multi-agent scenarios. Each bar shows the average
time step to reach the destinations of the corresponding category. Black
error bars indicate the standard deviations of instances in the corresponding
category. Red error bars show the maximum and minimum values. MPC
fails in Scene 5.

foreseeing this conflict. With the corridor’s size beyond
its predictive horizon, MPC fails to navigate this non-
convexity. In contrast, DDPG anticipates the encounter,
guiding a detour to prevent it. The hybrid approach,
informed by DDPG, not only avoids the bottleneck but
also outperforms DDPG alone in finish time.

• Scene 4 - Crossing of intersection: In this scenario, four
robots are initialized at the corners of an empty map and
move to the opposite corners. As a classic circular wait
example, each robot makes its decision according to the
decisions of the others and is besieged by them. MPC
struggles with this scenario, either failing or delaying due
to excessive calculation. DDPG performs better, likely
due to being trained to avoid collisions with significant
penalties, promoting obstacle avoidance behaviors. What’s
more, since each agent is equipped with the same DRL
model that is trained in a distributed way, they all tend
to present the same reaction (e.g. in Fig. 2, moving to
the right side is the mutual option), which is beneficial
in fixing the deadlock. Once again, the hybrid approach
excels by combining the uniform detour clue from DRL
and the decisive action from MPC.

• Scene 5 - Traffic at the roundabout: In this scenario, MPC
fails against nonconvex obstacles including a central static
barrier and other robots. Similar to Scene 4, DDPG offers
a more organized strategy in which each robot makes a
comparable turn,

In the multi-agent simulation, distributed training show-
cases intelligent agent behaviors, underscoring the benefits
of integrating MPC with DRL. In Scene 3, DDPG provides



an alternative to avoid potential deadlock between agents,
while MPC accelerates and smoothes the trajectory tracking
process. Scenes 4 and 5 display the emerging harmonious
behaviors of the DRL agents, which is reasonable since all
agents are equipped with the same decision-making kernel.

2) Results: The multi-agent evaluation focuses on the
success rate and finish time step. The hybrid method excels in
mean finish time across all scenes, as Fig. 3 illustrates, also
demonstrating stability through low variance. Both DDPG
and HYB-DDPG maintain 100% success rates across all
scenes, whereas MPC faces one failure in Scene 3 (90%
success rate) and fails in Scene 5 (0% success rate). The
evaluation demonstrates that the proposed approach success-
fully integrates the strengths of MPC and DRL, enabling
scalability from single-agent to multi-agent scenarios.

VII. CONCLUSION

In this study, we developed a DDPG model for safe
trajectory planning in dynamic settings using BEV vision
data and integrated it with MPC for detailed control. The
evaluations across various use cases show that this DDPG-
MPC hybrid outperforms previous DQN models, particularly
in success rate. We also tested the model in multi-robot
scenarios, finding that DDPG and MPC not only boost
individual robot performance but also enhance cooperative
behavior in robot fleets. Future work will focus on refining
the DDPG model’s planning efficiency and exploring how
varying lookahead distances impact performance, alongside
optimizing the trajectory generation from the DRL model.
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for AGV path following,” in International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 4789–4796.

[3] A. Dahlin and Y. Karayiannidis, “Obstacle avoidance in dynamic
environments via tunnel-following MPC with adaptive guiding vector
fields,” in Conference on Decision and Control (CDC). IEEE, 2023,
pp. 5784–5789.

[4] F. Bertilsson, M. Gordon, J. Hansson, D. Möller, D. Söderberg,
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