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Machine Learning to Predict Future Power and Energy Demands in the Battery
Electric Vehicles SUJITHA DAVIDSON, ZE ZHANG

Electric Engineering

Chalmers University of Technology

Abstract

With the maturer technique of batteries, the battery electric vehicles are strongly
developed in recent years for better ride experience and zero air pollution. In order
to promote the battery performance and prolong the battery lifetime, investigating
the battery states is necessary. A battery is a complex electrochemical device, whose
internal ingredients change over usage and time. With all the factors affecting the
battery as weather, temperature, driving behavior, driving load, etc., a battery
precise model is difficult to establish.

In this project, a new method based on machine learning technology is introduced
and tested. By analyzing and processing the real-world driving data from C30
battery electric vehicles provided by the Volvo Cars, a dataset containing several
signals from charging and discharging cycles is obtained. A pipeline mainly about
estimating the state of charge and state of health then is proposed to analyze energy
demands. The core is a machine learning model which contains two sub-models. The
first sub-model is a recurrent neural network for estimating the state of charge (or
depth of discharge), and the second one is a nonlinear autoregressive network with
exogenous inputs for estimating and predicting the state of health. The whole model
is tested on part of the C30 dataset promising results.

Keywords: Battery electric vehicle, battery states, machine learning, neural network,
big data.
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1

Introduction

In this chapter, for the topic Machine Learning to Predict Future Power and FEn-
erqgy Demands in the Battery FElectric Vehicles, the history, motivation, expected
outcome, limitation are introduced and discussed.

1.1 Background

Automobiles have been the most common way of private transportation for over
a hundred years. They bring human beings a lot of convenience as well as some
problems. Air pollution, for instance, is one of the side effects of conventional gas
cars. Electric vehicles as the new energy vehicles are widely developed these years.
They are quiet, easy to maintain, and cleaner. As the most important component,
batteries are always the hot spot in electric vehicles’ technique and their states are
mostly concerned.

After the productization in the automobile industry in the late 1800s, when the
Second Industrial Revolution came, the basis of current cars was developed [3].
Amazingly, one of the first tries on electric cars was invented just several years after
the productization of the gasoline cars, by British inventor Thomas Parker.
Looking back to history, in the beginning, electric vehicles (EVs) had the same even
better popularity compared to gasoline vehicles. Since the massive exploration of
oil boosted the development of Internal Combustion Engines (ICE) in the early
1900s, EVs started to lose the competition with ICE cars. However, due to the
pollution problem of ICE, EVs were destined to be brought up again, which was
the reality that the U.S. Congress decided new legislation “recommending electric
vehicles as a means of reducing air pollution” in 1966. Nowadays, as the new energy
automobile, EVs are wildly developed across the world by all the major automobile
manufacturers. The reasons are not only the pollution reduction demand but also
better driving experience such as the quieter driving environment. The recent study
[4] shows the vehicle electrification impact on air quality.

Nevertheless, a big problem for EVs is the complexity of batteries. EVs have higher
energy utilization rate but the battery volume is limited and its states are hard to
evaluate. Here comes the Battery Management Systems (BMSs). The BMS, as its
name implies, is a real-time system used to manage the rechargeable battery, in the
form of cell or pack. In EVs, the BMSs need to monitor the battery states, such
as current, voltage and temperature, optimize the battery performance, predict the
battery energy and consumption, record and schedule the charging and discharging
events [5]. The more accurate can the estimation on the battery states be, the better

1



1. Introduction

can the battery be utilized. To estimate the battery states requires the battery
model. The traditional battery model is the Equivalent Circuit Model (ECM). In
this report, a data-driven method is proposed. The battery model is represented by
a machine learning model.

(S .cnsavncnsy

Figure 1.1: One of Thomas Parker’s early cars outside the family home; The
Manor House, Upper Green, Tettenhall. Thomas is sat in the middle and on the
back seat is possibly his son Alfred. From the Wolverhampton History and Heritage
Website, Elwell-Parker, Limited.

1.2 Purpose

This project is meant to build a machine learning model to substitute traditional
ECMs. By training the new model with real-world charging and discharging data
from Battery Electric Vehicles (BEVs), this machine learning model should be able
to present the theoretical battery model and reserve the realistic using influence.
Specifically speaking, we want to build a machine learning model that can estimate
the battery states precisely for different BEVs in both short-term and long-term.
In addition, the new model should be of generalization for BEVs with the same
battery pack, but it can adjust itself by learning the actual charging and discharging
behaviors.

In this project, this model is called the Battery State Model (BSM) and can estimate
the current charge load and battery healthy condition as well as the future tendency.

1.3 Limitation

For any practical machine learning problem, one of the most significant factors
that affect the performance of the chosen model is the data. People keep saying

2



1. Introduction

that a good dataset for a certain application is the basic guarantee of valid results.
However, this is also the limitation for a lot of machine learning methods.

The limitations of this project are from two perspectives. The biggest one is that
the raw data from real-world driving test are not well organized. This is because the
sensor system to collect the data is old (it is important for this project to have data
over years but then the outdated sensor system has to be tolerated). The raw data
are not sampled in a fixed period and different sensors work in different frequencies.
Some sensors don’t have a precise measurement or delicate resolution, which means
they are dull to changes and basically can’t be used as real-time signals. The even
worse occasion is some of them recording wrong states of the battery or vehicle.
More details will be seen in the data processing part.

The other fatal issue is that the capacity signal is missing in the sensor system.
Since supervised learning is used in this project to estimate and predict capacity,
missing labels could mean direct failure. To fix this problem, an engineering way of
forming capacity is introduced. This engineering way which generates engineering
capacity calculates capacity by definition. The problem then is this method uses
charge amount difference and corresponding proportion to full charge to get the
actual full charge and the difference of charge amount is calculated by the current
signal. Both of them (the proportion value and current signal) are corrupted on
different levels and influenced by many factors. This will cause a bad engineering
capacity value. To make this better to use, people usually use some filters or fitting
methods. More details will be seen in the engineering capacity part.

There is also one man-made issue. Due to the confidential reason, not all information
about the data source is accessible for this project. With these limitations, the data
processing cost a long time and there wouldn’t be sufficient time to explore as many
possibilities as possible. This leaves more extension and possibility in the future.

1.4 Application

Electric vehicles have entered the cars market and the number of EVs is increasing
very fast. Batteries are usually one of the most expensive components in EVs, so it
is very reasonable to squeeze out as much as possible of them. This mainly means
that, with the premise of safety, the lifetime of batteries should be prolonged, the
power and energy capabilities should be improved, the power density should be large
and the usage should be stable. These cannot be achieved if the states of batteries
are unknown.

With the proposed methods, the battery management system can estimate the states
of the battery accurately under most conditions without knowing the individual
usage situation of the battery, just through several signals that are easy to get.
More specifically, BMS can estimate even predict the current battery remaining
charge (energy) as well as the healthy condition.
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Problem Definition

With the fast exponentially falling cost of battery packs for vehicles usage as in
battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid
electric vehicles (PHEVs) [6] [7], there is this big trend that all kinds of EVs are
occupying more and more cars market as the new energy automobile. Lithium-ion
batteries (LIBs) are the main role in this revolution due to their efficiency, high
voltage, high energy density, long cycle lifetime, and environmental benignity [8] [9].
Nowadays, almost all major car companies are developing pure electric vehicles which
are referred to as battery electric vehicles (BEVs) in this report. It is necessary to
understand the battery behavior in the real-world driving scenario for BEVs. The
monitoring and prognosis of cell performance including degradation in LIBs are
essential for assuring the reliability and safety of the battery electric vehicles. In
this chapter, we define our problem and the research questions that we aim to solve
in our thesis.

2.1 Problem Description

A battery is an energy storage device that converts the chemical energy stored in its
active materials into electrical energy by means of electrochemical reactions. The
basic electrochemical storage element is a cell. A battery consists of one or more
cells, connected in series, parallel or both, based on the desired nominal battery
voltage and capacity. An electrochemical cell is composed of an anode, a cathode
and between them an electrically insulating, but ionically conducting electrolyte
enabling ions to move through the cell. There is also a rigid separator, often a
polymer, between the anode and cathode to contain the electrolyte and prevent
short circuit [10].

The electrodes function as hosts for Li*. In the charged state, the anode (negative
electrode) has a high concentration of lithium and low potential. The cathode
(positive electrode) has a low concentration of lithium and high potential. When
connecting the electrodes via an external load, electrons move spontaneously from
the anode, increasing its potential, through the load to the cathode, decreasing its
potential, therefore reducing the driving force, i.e the overall cell voltage. Lit’s are
simultaneously transported by the electrolyte from the anode, through the separator,
to the cathode to conserve charge neutrality, figure 2.1. The described processes are
that of discharge. The processes are reversed during charging of the battery [10].
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Figure 2.1: Schematic illustration of working of LiB discharge and the aging mech-
anisms during usage [1].

Performance of the battery degrades with time and use (aging of the battery). Aging
of the battery depends on its usage and even the battery ages without use sometimes
(calendar aging). Aging is also due to various processes happening inside the battery.
The figure 2.2 shows the various aging phenomenon of the battery and explaining
them all is out of the scope of this thesis. But it is important to note the complexity
of the battery system.
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Figure 2.2: Different aging phenomenon of batteries [2].
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Based on the literature study, the various major parameters affecting the aging of
the battery were found to be,
Change in SOC.
Voltage and current.
Temperature.
Current density.
Number of charging and discharging cycles.

6. Charging rate, etc.
There is no doubt that the energy and power of the battery is highly related to its
charge amount and health state, which can be simply presented by capacity (state
of health, SOH) and state of charge (SOC). To know these values, a model of the
battery needs to be discovered.

Gk o

2.2 Modelling of the Battery

Before exploring more on the battery model, specific explanations on relevant terms
need to be made. Then, the conditional way of modelling is introduced before the
machine learning methods are presented in the next chapter.

~

— Capacity (SoH)

Remaining charge (SoC)

Required charge

\_—=_7

Figure 2.3: This figure shows the straightforward concepts of some battery states.
The initial capacity is known from the supplier, which is treated as a constant. The
capacity is the long-term state of the battery and state of health (SOH) is its relative
representation. The remaining charge shows how much charge left in the current
moment which is a short-term variable. State of charge (SOC) is the relative form
of the remaining charge.

The performance of the battery can be presented by the battery states. The states of
the battery are often continuously estimated in order to make sure that the battery
is always operating within the safe limits.
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2.2.1 State of Charge and Depth of Discharge

State of Charge (SOC) is the amount of charge stored in the battery, presented in
percent of total capacity (0-100%). It is the closest analogy to a fuel gauge in a
petrol engine car [11]. The SOC can be estimated in many ways. The most reliable
and intuitive way is to completely discharge the battery under known conditions
and measure the amount of charge drained. The battery will be depleted and the
measured SOC, however known, will no longer be relevant [12].
Depth of Discharge (DOD) is the complement of SOC as shown in equation (2.1).
While the SOC is (0% = empty; 100% = full), DOD will be (0% = full; 100% =
empty).

DOD =100% — SOC (2.1)
In this project, since the signal directly from the test batteries is DOD instead of
SOC, DOD is actually selected to use.

2.2.2 Capacity and State of Health

Capacity is easy to understand as the maximal amount of charge that can be stored
in the battery. Customarily, its unit is A - h as ampere per hour. It will decay over
time and usage.

The State of Health (SOH) is a general indicator of how well the battery is doing.
It is often used to compare the current capability of the battery to the initial 100%.
To do so, it is connected to some properties of the battery, often capacity, resistance,
self-discharge rate, or power density [12]. SOH is closely connected to aging. In fact,
it might be considered a tool to measure aging in the battery. Perhaps most used
is the capacity-based SOH, how much charge the battery can store. To simplify
this problem, in this project capacity is chosen to represent SOH. This parameter
will decrease with age, decreasing the amount of energy that can be stored in the
battery. Such degradation is important since it is closely connected to the range of
the car. It also means that an older battery will charge quicker since there is less
available lithium for transport [11].

To formulate the above battery states, assuming a battery with initial capacity C'ap,
ampere per hour, and real-time capacity Cap ampere per hour,

Qo = 3600 x Cap, (2.2)
@ = 3600 x Cap (2.3)
SOH = Q/Qo x 100% (2.4)
SOC = ¢/Q x 100% (2.5)
DOD = 100% — SOC (2.6)

where ¢ is the current amount of charge, @) is the current maximal charge capacity
and @)y is the initial battery capacity for brand new batteries.

2.2.3 Traditional ECMs

Due to the lithium-ion battery having a polarization phenomenon, this phenomenon
will lead to the battery dynamic hysteresis characteristics. Because of battery dy-
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namic hysteresis characteristics, the open-circuit voltage (OCV) curve of the charg-
ing and discharging process is different. The battery OCV of the charging process
is higher than discharging [13]. Hence a battery model is needed in order to make
estimations of the battery states. A LIB model can be classified as an electrochemi-
cal model, physical model, equivalent circuit model (ECM), thermal model, coupled
electro-thermal model, and so on. Among them, ECM is the most commonly used
in lithium-ion batteries SOC estimation for BEV applications due to their simple
model structure [13].

ECMs such as the Rint model, Thevenin model, PNGV model, GNL, n-RC model,
and FOM (Fractional Order Model), are shown in figure 2.4. The Rint model is very
simple to implement in real-time. However, the model’s output equation expressed
is only a rough estimate actual terminal voltage of the battery, which may lead to
large uncertainties in SOC estimates [14]. The Thevenin model connects a parallel
RC network in series based on the Rint model. The PNGV model can be used to
describe the changing of open-circuit voltage generated in the time accumulation of
load current by adding a capacitor in series based on the Thevenin model [15]. The
GNL nonlinear equivalent circuit battery model takes into account the influence of
the self-discharge on characteristics of the battery [16]. The n-RC consists of an
n parallel RC network in series based on the Thevenin model in order to consider
dynamic voltage performances [17].

(f) FOM

Figure 2.4: Several equivalent circuit models of batteries.

The intuitive phenomenon of polarization effect is that when the charging or dis-
charging process stops, the terminal voltage converges to an equilibrium value slowly
rather than immediately. However, since the nonlinear relations among the polar-
ization effect, current, SOC and temperature, the dynamic characteristics of the
battery are difficult to model [18].

Battery modeling has an important influence on SOC estimation. Establishing a
battery model is a challenge, because of the complex electrochemical and dynamic
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environment. Each model may lack accuracy and adaptability to use in different
operating conditions. In addition, the battery hysteresis effect is not considered
in many ECMs. So, we need to develop a suitable battery model that can work
accurately under different load conditions, which is done using machine learning.

2.3 Real-world Situation

For the EV battery systems, an accurate capacity prediction can prevent the battery
from over-discharge and charge, thus ensuring battery system safety, making more
efficient use of the limited energy, and extending the battery life. Specifically, it
can support the precise calculation of the vehicle driving range, provide a better
discharging or charging strategy, improve the efficiency of other power sources, and
make balance strategies work more effectively. The lithium-ion battery capacity es-
timation in BEVs has become a major challenge due to its complex electrochemical
reactions and performance degradation caused by various factors [19].

In order to improve the accuracy, stability, robustness, economy, and other chal-
lenges of the capacity prediction algorithm in electric vehicles, these issues, such as
lithium-ion battery hysteresis characteristic, battery model, aging, estimation algo-
rithm, and cell unbalancing, are worth studying in depth and are also solutions to
solve SOC estimation problems [13].

The remaining capacity of a lithium-ion battery is affected by many factors, such
as external environmental loads, the number of charging and discharging cycles, the
value of discharging current and so on. Since the battery capacity is related to several
measured features, it is convenient to estimate capacity by using trained connections
with multiple features from the current, voltage, state of charge and temperature
profiles. These methods avoid understanding complex reaction mechanisms inside
batteries to construct mathematical or physical models, thereby having been widely
investigated by many researchers. To effectively capture the non-linearity relation-
ship between the features and capacity, various machine learning approaches have
been integrated with feature-based methods as well. The prognostic results show
that these integrated methods often have a good performance in the battery capacity
estimation [20].

2.4 Research Goals

With all the problems and information, our project has several goals to complete.

1. Analyzing and processing the real-world EVs driving data.

2. Using machine learning methods to estimate the battery states including the
state of charge (or depth of discharge) and the state of health.

3. The estimation of the state of charge should have a small error. To start with
5% error is acceptable.

4. The estimation of the state of health should follow the ground truth as much
as possible. It is an extra goal if battery degradation can be predicted.

10



3

Theory and Approach

In this chapter, the core idea and main approaches of the new methods are presented.

3.1 OCV-S0OC relationship

The methods proposed in this project are based on the fact that the OCV-SOC
curve will change with the increasing of life cycles, or in other words the decaying
of battery capacity. However, the OCV-SOC curve will change based on a lot of
factors, the demand to find a generalized model is brought up. Reference [21] has
a review on this model. But most methods are verified in a lab environment while
the real situation is more complicated.

In this project, a pipeline to obtain the battery states is proposed based on the
batteries’ data from real-world driving. The OCV-SOC relationship is represented
by a neural network and with the estimated SOC and other signals, the capacity
can be estimated and predicted.

3.2 Machine Learning

The traditional way to solve an engineering problem as shown in chapter two about
ECMs is to searching for an answer with known rules and inputs. It is pretty
straightforward to understand but with an obvious problem, which is how to know
the rules. In a lot of cases, accurate rules or models are not just given. They are ac-
tually black-box systems. It is then easier to just let the system running in different
situations (inputs) and collect the data (outputs) from these tests. So, the target
changes into searching for the rules with given inputs and outputs. If a hypothetical
model has the same or tolerably similar performance as the real one, the rules are
found. Machine learning (ML) methods are designed for this purpose.

As a significant branch of Artificial Intelligence (AI), with sufficient data and rea-
sonable assumption on the model, ML can make the machines learn by themselves to
find the model [22]. However, as one of the most typical features of ML, data-driven
means the performance of ML is directly linked to the quality and quantity of data,
which is normally the biggest issue of ML.

Assuming that there is a potential relationship among the SOC, capacity (SOH) and
other signals such as the current, voltage, temperature etc., which can be validated
to some extent in the previous chapter, if the relationship can be discovered, the
states of the battery can be obtained by simply measuring those signals. However,
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the signals from the real world are often corrupted and influenced by a lot of fac-
tors. The driver’s behavior will also affect the aging problem but it is very hard to
consider that into the vehicle or battery model. A good way to explore this is via
machine learning methods.

ML is able to find the complex underlying pattern from big data. There are a lot of
machine learning methods. The battery state estimation in this project is a typical
supervised learning problem, and a regression problem more specifically speaking.
Supervised learning means the result of the learning process has a standard answer
to compare with and evaluate. This answer is commonly called the label. So, a label
can be regarded as a concise representation of a data sample. In this case, SOC and
capacity (SOH) are the labels.

3.2.1 Regression Model

The two basic problems of supervised learning are classification and regression. If
the desired output is the class of the input, for example, whether an input image
contains a dog, cat or other animals, then it is called a classification problem. In a
classification problem, the output belongs to a discrete, finite category. Otherwise,
if the desired output is a continuous value, it is a regression problem. SOC and SOH
are both continuous value from 0% to 100%. Here it is a typical regression problem.
A general format for regression problems can be defined as following, for many
samples in the form of x[! = (w1, 29, ,xx)T, which means the i-th sample with N
features, each of them has a corresponding match target ¢/, Note that ¢ is simplified
here since it can be a vector as well but this won’t influence the calculation. This
mapping from x to t is presented as

L= f(x) (3.1)

A simplest assumption is that the relationship between the input x and output ¢ is
linear. Then equation (3.1) can be defined more specific as

t=w'x+b (3.2)

where w = (w1, ws, -+ ,wy)T and b = (by, by, -+ ,by)7.
Similarly, the relationship can be polynomial, exponential, logarithmic and so on.
For example, the logarithmic fitting is implemented later to smooth the capacity
decaying curve for the neural network achieving better performance. The logarith-
mic fitting is based on the formula (3.2) but the input is rescaled logarithmically as
below.

t=w-log(x)+0b (3.3)

After the model is determined, an algorithm to find the optimal parameters is re-
quired. The most common one, also the one used in this project, is the least squares
approximation. This algorithm defines the loss function as equation (3.4) and finds
the minimal loss by setting its gradient to zero.

n

L=> (yi—t) (3.4)

i=1

where y is the true value and ¢ is the estimation.
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3.2.2 Deep Machine Learning

The traditional machine learning methods focus on expressing some relationship
in a specific mathematical way, usually as a function. With the growth of data
size and complexity in the relationship, one function is not enough anymore. Then
more functions of previous functions are introduced to fulfill the complexity. This
is artificial neural networks and one repeat of the function is called a layer. With
multiple layers, the machine learning models are referred to as deep. So, deep
machine learning is actually neural networks with multiple layers.

3.3 Artificial Neural Networks

The artificial neural network (ANN), or neural network (NN) in short, is a branch of
machine learning technique which is a major concept in artificial intelligence (Al).
Looking at the working mechanism of human brains, the neural signals transmit
through nerve cells, as known as neurons. They are regarded as a basic computing
unit in our brain. The reason that a human can understand complicated things and
distinguish different things is there are billions of neurons analyzing and computing
the electric signals converted from the external signals like light, sounds, force, etc.
into abstract and summative concepts. The concept of the ANN is a simple mimic
of human neurons.

5 Linear function 6 ReLU function
4
0
2
-5 0
-5 0 5 -5 0 5
| Sigmoid function ] Tanh function
0.5
0.5 0
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0 1
-5 0 5 -5 0 5

Figure 3.1: Four common activation functions in artificial neural networks.

In ANNSs, the basic computing unit is known as the Perceptron, which is multiple
inputs, signal output, nonlinear function. For N inputs xq, x9, ---, xy, the per-
ceptron calculated the weighted summation with a bias b and perform a nonlinear
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function f to get the final output y. Its formula is
y = flwizy +wyxs + - + wyry +b) (3.5)

where the nonlinear function f is called the activation function and is often selected
as the linear function, sigmoid function, tanh function or ReLLU function as shown
in figure 3.1.

A perceptron is a single layer neural network and obviously not a deep one. However,
by regarding one perceptron as one node and setting several nodes per layer and
several layers in total, a basic deep feedforward neural network (FNN) is formed as
shown in figure 3.2. There are one input layer, m hidden layers, and one output
layer. Since the input layer doesn’t perform any calculation, this neural network is
called a m + 1 layers neural network. All the parameters related to the architecture
of the neural network are hyperparameters, including the number of hidden layers,
the number of nodes in each layer and so on. Normally, the activation functions in
all hidden layers are the same noted as fj,.
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Figure 3.2: A classic deep neural network with complete structure hyperparameters
noted.

Besides the hyperparameters that shows the structure of a neural network, weights
and biases are the parameters in a neural network. Now a vector, S = (n{, ng, ..., )7,
can be used to represent the architecture of the deep neural network, which means
the neural network is of m layers and the i-th layer has n; nodes. So, in the i-th
node of j-th layer, the calculation is

a7ty = gl ((W?])Ta“‘” + bgﬂ) (3.6)

7

where the weight w! = (wz[q,w%, e >wz[{7]zj,1)T> and all = (al! &, ... ,agj]_)T is

the output of j-th layer (there are two special cases: the input x = al% and output
_ 4 [m+1]
y=a ).
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3.3.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a kind of Neural Networks that have
great performance in image recognition and classification. The basic principle is
regional feature detection. By collecting subtle features like regional edges and
shadows and aggregating them to form larger features like shapes and colors, CNNs
can construct a feature pyramid while the top is the detected object’s label or class.
The "convolution' operation shown as equation (3.7) is executed by the convolutional
layers, which are the key to extract features.

i,j) = ZZc(m, n)x(i —m,j —n) (3.7)

In equation (3.7), o(i, j) is the output point at i-th row and j-th column, and ¢ is
the filter, x is the input. The values m and n mean every element in the filter.
CNNS5s can be used to detect spatial features inside an image and similar situations.
The main idea is to capture the changes in successive values. Thus, CNNs actually
fit any application fulfilling this feature, which means CNNs can deal with more
than just pictures or videos.

In this project, CNNs couldn’t give a satisfactory result on the C30 dataset, thus
not included in this report.

3.3.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are another kind of Neural Networks that are
designed to deal with sequential information such as texts and time series.

The essential difference between RNNs and other feedforward neural networks is
that RNNs have the memory function. In equation (3.8), the bold part reserve the
previous output as the memory and combine it with current inputs. To compare
it with the equation (3.5), it is obvious the dissimilarity is the term my;_; which
stands for the history.

yp = furzy + waze + - - - + WnTN + MYp—1 + b) (3.8)

A simple RNN node designed according to the equation (3.8) cannot hold a lastingly
good performance with the time prolonging. Therefore, an advanced recurrent neu-
ral network, the long short-term memory neural network (LSTM) [23], is invented
as the remedy to the problem that the simple RNNs cannot preserve a valid long
memory, which manifests exploding or vanishing gradient.

iy = o(z U+ hy_ W'+ by) (3.9)
fi = o(x, U + he a W7+ by) (3.10)
or = o(xU° 4+ hy_1 W+ b,) (3.11)
Cy, = tanh(z,U9 + hy_y W9 + be) (3.12)
Cy= fix Coy + iy % C, (3.13)
hy = tanh(Cy) * oy (3.14)

From the equation (3.9) to (3.14), the mechanism of the LSTM node is presented.
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3.4 NARX

The Nonlinear Auto-Regressive model with Exogenous inputs (NARX) is an impor-
tant class of discrete-time nonlinear systems that can be mathematically represented
as,

yn+1) = fly(n), - ,y(n—dy, + 1);u(n),u(n —1),--- ;u(n —d, +1)] (3.15)

where u(n) € R and y(n)eR denote, respectively, the input and output of the model
at discrete time step n, while d,, > 1 and d, > 1, d, < d,, are the input-memory
and output-memory orders. In a compact vector form, eq. (3.15) may be written
as,

y(n+1) = fly(n);u(n)] (3.16)
where the vectors y(n) and u(n) denote the output and input regressors respectively.
The nonlinear mapping f(.) is generally unknown and can be approximated, for ex-
ample, by a standard multi-layer perceptron (MLP) network [24]. The resulting
connectionist architecture is then called a NARX network, a powerful class of dy-
namical models which has been shown to be computationally equivalent to Turing
machines [25].
In this thesis, the nonlinear mapping of f(.) is done using Feedforward Neural Net-
work (FFN), Random Forest Regressor (RFR) and XGB Regressor (XGB). Hence,
in the following sections, RFR and XGB are discussed.
The estimations are done using FFN, RFR and XGB and linear regressor and the
predictions are made using NARX.

[ Random
Forest
%. Regressor

oae® XGBoost
[/

Linear .
Regression

’;./

FFN
|

Figure 3.3: The concept of f(.) approximation.

3.4.1 Random Forest Regressor

Random Forest is a flexible machine learning algorithm that produces great results
most of the time with minimum time spent on hyper-parameter tuning. It is pow-
erful due to its simplicity and also because it can be used for both classification and
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regression problems.

Random Forest is an ensemble algorithm. It uses the bagging technique that reduces
the overfitting. Bagging is an interesting idea of combining the predictions of n dif-
ferent models each of which was only somewhat predictive while their predictions
were not correlated with each other. That would mean that the n models would
have profound different insights into the relationships of the data. If an average of
those n models is taken, then it brings in effectively the insights from each of them
[26]. So this way averaging models is the technique behind the ensemble algorithm.
A random forest algorithm has two concepts that give it the name random. They
are the random sampling of training observations when building trees and random
subsets of features for splitting nodes.

Each tree in a random forest learns from a random sample of the training obser-
vations. The samples are drawn with replacement, known as bootstrapping, which
means that some samples will be used multiple times in a single tree. The idea
is that by training each tree on different samples, although each tree might have
high variance with respect to a particular set of the training data, overall, the entire
forest will have lower variance but not at the cost of increasing the bias [26].

The other main concept in the random forest is that each tree sees only a subset of
all the features when deciding to split a node. In Skearn this can be set by specifying
max__features = sqrt(n__features) meaning that if there are 16 features, at each
node in each tree, only 4 random features are considered for splitting the node [26].
Sklearn of scikit-learn is used for implementing the random forest regressor. The
figure 3.4 shows how a random forest algorithm works.

Ensemble

Model

Dataset

Figure 3.4: Random forest - a way of bagging decision trees.

The number of estimators represents the number of trees in the forest. Usually the
higher the number of trees the better to learn the data. However, adding a lot of
trees can slow down the training process considerably, therefore we do a parameter
search to find the effective number of estimators.

Depth of each tree in the forest is an important parameter. The deeper the tree,
the more splits it has and it captures more information about the data.
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However, according to sklearn documentation for the random forest, the search for
a split does not stop until at least one valid partition of the node samples will be
found, even if it requires to effectively inspect more than max_ features features.
The key insight of the random forest regressors is to construct multiple models which
are better than nothing with a significantly lower risk of overfitting.

3.4.2 XGBoost Regressor

XGBoost (Extreme Gradient Boosting) is a scalable end-to-end tree boosting sys-
tem. It uses the technique of Boosting along with bagging of the random forest.
Boosting is a sequential process, where each subsequent model attempts to correct
the errors of the previous model. The succeeding models are dependent on the pre-
vious model.

Here is an instance to understand boosting. A subset is created from the original
dataset. Initially, all data points are given equal weights. A base model is created
on this subset. This model is used to make predictions on the whole dataset. Errors
are calculated using the actual values and predicted values. The observations which
are incorrectly predicted, are given higher weights. Another model is created and
predictions are made on the dataset. This model tries to correct the errors from the
previous model. Similarly, multiple models are created, each correcting the errors
of the previous model.

The final model (strong learner) is the weighted mean of all the models (weak learn-
ers). Thus, the boosting algorithm combines a number of weak learners to form a
strong learner. The individual models would not perform well on the entire dataset,
but they work well for some part of the dataset. Thus, each model actually boosts
the performance of the ensemble [27].

The figure 3.5 shows the idea behind the XGBoost algorithm.

Bagging

Ensemble
Model

I

Dataset

Figure 3.5: XGBoost Principle.

XGBoost is one of the fastest implementations of gradient boosted trees. It uses
parallel computing. That is when XGBoost is executed, by default, it would use

18



3. Theory and Approach

all the cores of the computer. The whole point of gradient boosting is to find
the function which best approximates the data. When building a gradient boosted
decision tree, a challenge is to decide how to split a current leaf.

It is done by considering the potential loss for all possible splits to create a new
branch (especially if you consider the case where there are thousands of features,
and therefore thousands of possible splits). XGBoost tackles this inefficiency by
looking at the distribution of features across all data points in a leaf and using this
information to reduce the search space of possible feature splits.

Due to the complexity, XGBoost algorithm is not fully explained here.

3.4.3 Linear Regressor

Linear regression attempts to model the relationship between two variables by fitting
a linear equation to observed data. One variable is considered to be an explanatory
variable, and the other is considered to be a dependent variable. A linear regression
line has an equation of the form Y = a + bX, where X is the explanatory variable
and Y is the dependent variable. The slope of the line is b, and a is the intercept
(the value of y when x = 0) [28]. The coefficients and intercept are estimated by
least squares, i.e., setting them equal to the unique values that minimize the sum
of squared errors within the sample of data to which the model is fitted. And the
model’s prediction errors are typically assumed to be independently and identically
normally distributed.

3.5 Engineered State of Health

In the first chapter, the limitations of this project are mentioned, where the most
fatal one is the absence of the capacity signal. However, according to the definition
of SOH, there is a way to form SOH using other signals. In this way, the formed
SOH is called engineered SOH.

If the charge quantity as shown in equation (2.2) to (2.6) in the battery can be
determined, with the DOD signal the capacity can be calculated.

S I(t)dt

H pu—
SOH = 56D ) — DOD{)

(3.17)

In equation (3.17), SOH is regarded as a constant in short-term, like during one
driving. Thus, it can be calculated in this way. However, the current signal might
be not stable and the SOC signal is often inaccurate, which makes the engineered
SOH very noisy.

To weaken the noise and obtain a feasible dataset for training and testing, some
approaches are implemented. Common sense is that longer the charging or dis-
charging process is, better accuracy the sensor can provide. Meanwhile, longer
process means a larger difference between the start and end values of DOD. So,
the log data is weighted by the value difference of DOD. Another fact is the SOH
does not change too much within a short duration. So, to smooth the SOH, we can
calculate the average over a short duration. Combining these ideas, the weighted
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average is calculated. For instance, in a period of 5 days, the engineered SOHs and
its corresponding DOD differences in i-th day are SOH; and ADOD;.

> SOH; - ADOD;

SOHwya = 3

(3.18)

In this case, the duration is selected as 30 days. The result is shown in figure 3.6.
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Figure 3.6: Several ways to smooth the engineered SOH. For the raw data points,
deeper color means a larger weight. The linear fit curve shows a rough tendency
while the logarithmic fit gives better following to the original data.

To figure out the trend of the SOH change, fitting methods are used. The raw data
are fitted into two models, linear one and logarithmic one. The formulas are

y=ar+b (3.19)
y=ualogx+b (3.20)

Later, the logarithmic fitting results are actually used for the machine learning
process.
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Data Description and Processing

4.1 C30 Real Fleet Dataset - Volvo Cars Corpo-
ration

Figure 4.1: This is one Volvo C30 Battery Electric Vehicle. C30 is used mainly
for testing. They are assigned to different users who mostly driving around the
Gothenburg city. The sensor system will log all the defined signals and all the
records are sent to Volvo Cars.

4.1.1 Volvo C30

The electric C30 has a 24 kWh lithium-ion battery, supplied by US manufacturer
EnerDel [29]. The electric motor, the motor controller, the charger and other drive-
train components are supplied by Swiss manufacturer BRUSA Elektronik AG. [30].
Top speed is estimated by Volvo at 130 km/h (81 mph), with acceleration from 0-50
kph (0-31 mph) in 4 seconds. The C30 Electric can be recharged from a regular
household power SOCket and a full charge takes about 7 hours. The all-electric
range is up to 150 kilometers (93 mi). The batteries are installed where the fuel
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tank normally sits and also in a special compartment in the C30’s central tunnel,
and as a result, the luggage compartment is unchanged [31]. In August 2012, Volvo
ordered a second supply of battery packs from EnerDel to build an internal test fleet
together with Siemens [32] [33].

The Volvo C30 Electric is equipped with three climate systems: one supplies the
passengers with heating or cooling; one cools or warms the battery pack as neces-
sary; the electric motor and power electronics are water-cooled. The climate control
in the passenger cabin features a bioethanol-powered heater, a solution chosen by
Volvo to get heating without compromising the battery driving range, but the driver
has the option to run the climate unit on electricity from the batteries. Ethanol is
the default mode and the ethanol tank can carry 14.5 liters (3.8 US gal) of bio-
ethanol. Volvo has Tested the C30 in winter conditions in temperatures as low as
20°C' (4°F) [34].

The C30 DRIVe was one of the five finalists to the 2011 Green Car Vision Award
[35]. In July 2012, the Volvo C30 electric was named the "Green Car of the Year'
in China at the 4th China New Energy Mobility Summit [36].

4.1.2 Dataset

In 2012, Volvo Cars Corporation launched around 150 C30 Vehicles in the first
generation and an additional 150 in the second generation, which was launched a few
years later. These cars were equipped with modules that could send measurements
to the Volvo Cars Corporation through GSM network. The data was collected with
an event-based logging system that is, the data was only when there were changes
in the values of the signals. From this, it can be concluded that no data was
logged when the car was idle. On the other hand, intensive use can give a sampling
frequency higher than once per second. There are also built-in systems that make
the car wake up and send a signal with a set interval if it is not already in use. The
cars were monitored for a period of six years and hence, a large collection of data
points were collected that are separated from seconds to even weeks.

There were about 60 signals recorded in the cars. After careful inspection of the
data, only the signals that are important for this thesis were used to build the model.
Finally, the selected signals are battery output current, battery output voltage,
battery working temperature, driving distance, the depth of discharge, power and
estimated time to empty the battery.

4.2 Preprocessing

Data preprocessing is a necessary step in any machine learning procedure. It is a
technique in which raw data is transferred into an understandable and feasible for-
mat. Real-world data are often incomplete, inconsistent, and/or lacking in certain
behaviors. Moreover, real-world data are likely to contain many errors. Data pre-
processing is a proven method of resolving such issues. Figure 4.2 shows how data
preprocessing is done usually.
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4. Data Description and Processing

4.2.1 Error detection

In the raw data, at some moments, the sensor system doesn’t work properly, which
leads to some wrong values like zero, negative values or sudden jump or drop. For
some signals like the voltage, total driving distance, and DOD, they shouldn’t have
negative values or zeros for some of them. The whole cycle is traversed and all the
wrong values are replaced by the previous valid value. As for the sudden changes,
they are detected through the difference of the original signal. If there is abnormally
large value in the differential sequence, the location of the targeted sudden value is
found.

Raw Data

Prepared
Data

Apply Pre —
processing
to data

/
Raw Data \_/

Iterate until data is ready

Figure 4.2: Preprocessing in machine learning.

It is also very common to see the missing values, which requires imputation. Since
the resolution of the original signal is in second, the signal is so much precise than
needed. Imputation is just simply holding the previous valid value.

The strategy here is quite easy because the data are of a large size and complex
algorithm will lead to extremely slow processing.

4.2.2 Integration and resampling

The raw data are sparse. There are many repeating seconds containing information
of different signals. In order to implement resampling, there can’t be any repeating
time moments. All the information in the same second needs to be integrated. This
step costs a lot of computing power. The final method is to find all the extra seconds
in one cycle and remove them all at once.

After selecting relevant features out of all the signals, the charging and discharging
cycles need to be recognized. Fortunately, there is one signal "ChargeMode" record-
ing the current charging condition. It is not noise-free and perfectly accurate. By
combining other signals as speed, current, etc., the error part can be mostly removed
and the charging and driving cycles can be divided.

In the end, all the cycles need to be resampled so that they can be fed into the
machine learning model. Linear interpolation is implemented to fulfill this task,
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4. Data Description and Processing

which is forming a linear function between two points and calculate the value of a
certain point in between.

A
Yy : .
Linear Interpolation
original
v .
)-A point
0 >

sample 1 sample 2 sample 3 X

Figure 4.3: The concept of linear interpolation is to regard the unknown points as
points on the linear function formed by the previous and next known points.

4.2.3 Prepared data

The whole procedure of preprocessing is shown in figure 4.4.

" "
. 2,

) )
L 4 l L 4

Features and car selection

Error detect " Integration

Imputation

Raw data

Data in charging and discharging cycles Filter and generate

Resampling

Linear interpolation

charging and discharging cycles

Figure 4.4: The complete procedure of data preprocessing contains error correc-
tion, data interpolation, feature detection and resampling. The result is a dataset
of separately driving and charging cycles.

As a company confidential policy, the real data are not allowed to expose. A similar
sample is shown in figure 4.5.
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DOD Voltage (rescaled)
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Figure 4.5: A sample of processed data.
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Battery States Estimation and
Energy Synthesis

In this chapter, the technical details and results are presented. The whole project
obeys a pipeline shown in figure 5.1.

| T T T
| | | |
voltage } N : : } voltage, current
current | | DOD : } temperature, -
| |
@ T Model 1 T ‘O : ﬂ—@
| | P ~
I y [
} — : | i\ _______ x': \
| | | ! H |
| | | |
SR !
} L : SOH : T }
tempregture } Model 2 : O i i energy, power, -
SN W : g ©
|
‘ | Battery ! \
Charging } Battery State Model : State I Energy Estimator } Discharging

Figure 5.1: The pipeline consists of two parts. The front one is Battery State
Model (BSM) which takes the electric and temperature signals from the charging
process and outputs the states, DOD and SOH of the battery. The other part
is an energy estimator that takes several signals from the discharging process and
evaluates the energy-consuming situation.

5.1 Battery State Model

As discussed in previous chapters, the battery states are the basis to analyze energy
and power. The battery states are mainly about the battery’s health condition and
the remaining quantity of charge, which are SOH (capacity) and SOC/DOD.

5.1.1 Estimation of DOD

As shown in figure 5.1, Model 1 is the one estimating the depth of discharge, which
is a recurrent neural network with long short-term memory units. The structure of
the RNN is shown in table 5.1.
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Layer ‘ Output Shape ‘ Number of Parameters

Input (s,t,2) 0

LSTM (5,4,8) 384

Dense (s,t,1) 9
Total:393

Table 5.1: The structure of Model 1, RNN. s is the number of samples, and t is the
length of a sample, which is about one thousand in this case. The input layer has
two channels as the current and voltage, and the LSTM layer has eight channels.

The training and test are on 10 cars. Each car has about 1000 samples. The training
set is formed by 9 cars out of 10 and the left one is the test set. Therefore, there
are about 9000 samples in the training set which contains about 8000 for training
and about 1000 for validation, and about 1000 samples for test. The training is
conducted for 30 epochs on a GPU, Quadro M2000M. Each epoch costs about 8
seconds. The training process and test result are shown in figure 5.2.

Estimation of DoD for the Test Cycles of a Testing Car

—-== true
—— estimate

0 200 400 600 800 1000

time unit
0.0010
—>— loss
0.0008 4 val_loss
0.0006{ -
0.0004 -
0.0002 A o
e
0.0000 T T T T T T
0 5 10 15 20 25 30

Enochs

Figure 5.2: The training loss graph shows a bit overfitting but the test result is
pretty good. The estimation can follow the true curve within an acceptable error.

To cross-test the RNN model, four more tests are implemented with a random test
car. Then the mean squared errors between the estimation and true of each test are
counted as seen in figure 5.3.
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Figure 5.3: The statistics show that this RNN model is quite stable and mostly
with small errors. Actually, most big errors are due to the wrong data but not the
model.

5.1.2 Estimation of SOH

In figure 5.1, Model 2 is used to estimate the battery state of health, which is a
nonlinear autoregressive network with exogenous inputs (NARX).

In this method, first a model is trained to predict the target value one step ahead.
Then the predicted one-step ahead value is reused to produce the prediction of the
next step. By iterating this procedure, one is able to obtain a multi-step prediction.
The Data obtained after splitting the log files to charging and discharging cycles
are converted to a single record by taking the mean of the selected features. The
selected features are DOD, temperature, current, voltage and temperature with the
label as capacity obtained from the logarithmic fitting of engineering SoH.

The training input data is the mean DOD, max DOD, min DOD, mean Temperature,
mean voltage and mean current with the label as the Capacity. We use only the
charging cycles since the current is almost constant during charging.

The training is performed on 22 cars and 1 car is used for testing. The cross-
validation is done and the results for all the cars are shown here.

On the whole, there are about 430,000 cycles altogether. Each test has different
cycles based on the usage of cars. The training is done on a GPU, Quadro M2000M.
The f(.) fitting is done using RFR, XGB and FFN. The FireTS module that supports
sklearn interface is used to perform the training. The exogenous delay is set to 0
and the exogenous order is set to 5 based on experiments. The multi-step prediction
is done directly and No future inputs are used in the prediction.

Results of one car is shown here. But four cars that are driven for longer cycles are
chosen to illustrate the performance of the model as the prediction of the battery’s
health needs to be done for the long term. Note the final assessment is based on all
the cars. The rest of the results are presented in the appendix.
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Training Parameters ‘ Values

n_estimators 100
criterion MSE
bootstrap True

Table 5.2: Parameters of RFR.

5.1.2.1 NARX + Random Forest Regressor

The default parameters of the Random forest regressor showed best when tested
with different values. The number of estimators used is 100 for both random forest
regressor and XGBoost for comparison. The table 5.2 shows some of the tuned

parameters and their values that were used.
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Figure 5.4: 1 Step predictions for Car 1 using Random Forest Regressor.
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5.1.2.2 NARX +XGBoost

Due to time restriction, only few parameters were modified. The parameters chosen
for the XGBoost are learning rate, eta = 0.3 and n__estimators = 100.

SoH Predictions for carl - 1 Step ahead predictions

—— True SoH
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o

©
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Figure 5.5: 1 Step predictions for Car 1 using XGBoost Regressor.

5.1.2.3 NARX + Feed Forward Network

A traditional feed forward network with 16 hidden layers was used and its architec-
ture is shown in the table 5.3. The input layer has 6 channels as the mean DOD,
min DOD, max DOD, mean current, mean temperature and mean voltage. The
hidden layers have 16 and 32 neurons separately. Training parameters are shown in
table 5.4. Other parameters are set to the default.

31



5. Battery States Estimation and Energy Synthesis

Layer ‘ Output Shape ‘ Number of Parameters
Input (None,6) 0
Hidden Layer 1 (None, 16) 96
Hidden Layer 2 (None,32) 544
Total:673

Table 5.3: The structure of the model FNN.

Training Parameters ‘ Values

Solver Adam (0.001)
Activation Function | relu
#iterations 107

Training Loss 0.28

Loss Function MSE
Tolerance 0.0001

Batch Size 200

Table 5.4: Training parameters of FFN.
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Figure 5.6: 1 step ahead predictions for Car 1 using Feed Forward Network.
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5.1.2.4 NARX + Linear Regressor

The linear regressor is implemented with the only parameter fit_intercept = True.

SoH Predictions for carl - 1 Step ahead predictions

—— True SoH
—— Linear Regressor

9.5

9.0
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8.0
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Cycles

Figure 5.7: 1 step ahead predictions for Car 1 using Linear Regressor.

5.2 Energy Synthesis

To conclude the complete energy synthesis, an example would be helpful.
Assuming an electric car with an initial capacity 60 A -k, which is 216000 Coulomb
charge in total, after charging the battery state model has an estimation of 80%
SOH and 50% SOC. The remaining charge is

216000 x 80% x 50% = 86400 C (5.1)

If the average or predictive discharging current is about 10 A, then the time to
empty the battery is 2.4 h.
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Accumulating
discharging current:

Initial capacity: After charging: Remaining ~10 A
60 A-h o | soH=g0% |Em| charge: D
(216000 C) SOC=50% 86400 C

Time to empty:
2.4 h

Figure 5.8: A easy example about how to use the pipeline. Note that every time
the vehicle is charged, there would be an updated SOH.

34



O

Battery Degradation

NARX model is highly powerful in the prediction of time series. This approach
has not been applied to any practical battery degradation problem. In this thesis,
we can observe how decent predictions can be made when machine learning models
are nested together with a non-linear auto-regressive exogenous model for real-time
data.

The results from the prediction of the battery aging are presented here. The step-
ahead predictions were made for 10, 50 and 100 steps ahead with each step denotes
a charging cycle. Since the battery degradation is affected by driving behavior, it is
assumed to be indirectly model through the exogenous input given to the NARX.
The four cars that were driven for longer cycles are chosen to illustrate the perfor-
mance of the model as the prediction of the battery’s health needs to be done for
as farther as possible. Note the final assessment is based on all the cars.

6.1 Battery Degradation Prediction

6.1.1 NARX 4+ Random Forest Regressor

The default parameters of the Random forest regressor showed best when tested
with different values.

The number is estimators used is 100 for both random forest regressor and XGBoost
for comparison. The table 5.2 shows some of the tuned parameters and their values
that were used.
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e« 10 Steps Ahead Prediction
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Figure 6.1: 10 steps ahead predictions for Car 1 using Random Forest Regressor.
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e« 50 Steps Ahead Prediction
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Figure 6.2: 50 steps ahead predictions using Random Forest Regressor.
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e« 100 Steps Ahead Prediction
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Figure 6.3: 100 steps ahead predictions for Car 1 using Random Forest Regressor.

6.1.2 NARX +XGBoost

After several testing, the parameters were chosen for the XGBoost regressor. There
are a huge amount of parameters that can be altered and experimented with. Due to
time restrictions, only few parameters were modified as the learning rate, eta = 0.3
and n_estimators = 100.
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e« 10 Steps Ahead Prediction
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Figure 6.4: 10 steps ahead predictions for Car 1 using XGBoost Regressor.
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e« 50 Steps Ahead Prediction
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Figure 6.5: 50 steps ahead predictions for Car 1 using XGBoost Regressor.
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e« 100 Steps Ahead Prediction
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Figure 6.6: 100 steps ahead predictions for Car 1 using XGBoost Regressor.

6.1.3 NARX + Feed Forward Network

A traditional feed forward network with 16 hidden layers were used. The architecture
of the FFN is shown in table 5.3. The training parameters are shown in table 5.4.
The other parameters are set to the default.
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e« 10 Steps Ahead Prediction
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Figure 6.7: 10 steps ahead predictions for Car 1 using Feed Forward Network.
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e« 50 Steps Ahead Prediction
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Figure 6.8: 50 steps ahead predictions for Car 1 using Feed Forward Network.
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e« 100 Steps Ahead Prediction

SoH Predictions for carl - 100 Step ahead predictions

10
—— True SoH
—— Feedforward Network
9
B 8
<
[&]
%]
Q
s
S
T
o
n
7
6

0 200 400 600 800 1000
Cycles

Figure 6.9: 100 steps ahead predictions for Car 1 using Feed Forward Network.

6.1.4 NARX + Linear Regressor

Linear Regressor is implemented with fit intercept = True.
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e« 10 Steps Ahead Prediction
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Figure 6.10: 10 steps ahead predictions using Linear Regressor for four different
cars.
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e« 50 Steps Ahead Prediction
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Figure 6.11: 50 steps ahead predictions using Linear Regressor for four different
cars.
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e« 100 Steps Ahead Prediction
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Figure 6.12: 100 steps ahead predictions using Linear Regressor for four different
cars.

6.2 Evaluation of the Models

Validation and Evaluation of a Data Science Model provides more color to our
hypothesis and helps evaluate different models that would provide better results
against our data.

In this thesis, the models are evaluated based on Mean Square Error (MSE), R?
score and variance and they are implemented using the scikit-learn package.
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6.2.1 Mean Square Error

Mean square Error (MSE) is the average of the square of the errors. The larger the
number the larger the error.

MSE = izn:(yz — ;) (6.1)

=1

6.2.2 R? Score

R? Score varies between 0 and 100%. It is closely related to the MSE, but not the
same.

MSE(Model)

2_1_

=1 MSE(Base) 02
MSE(Model) _ Y7 (y: — §i)? (6.3)

MSE(Base) Y0 (yi — 9:)?

where MSE (model) is the MSE of the predictions against the actual values, and
MSE (baseline) is the MSE of mean predictions against the actual values.

In other words, how good our regression model as compared to a very simple model
that just predicts the mean value of target from the train set as predictions.

6.2.3 Variance

Variance is a measure of how far observed values differ from the average of predicted
values, and the goal is to have a low value.

6.2.4 Cross-validation

Cross-validation is a model validation technique for assessing how the results of
statistical analysis (model) will generalize to an independent data set. It is mainly
used in prediction, and one wants to estimate how accurately a predictive model
will perform in practice. The goal of cross-validation is to define a data set to test
the model in the training phase (i.e. validation data set) in order to limit problems
like overfitting, underfitting and get an insight on how the model will generalize to
an independent dataset [37].

In this thesis, for evaluation, 1 fold cross-validation is used that is the prediction
function was learned using 21 cars (folds), and the fold (1 car) left out was used for
tests.

This metric helps us validate which the model which will perform best on unseen
data.

The tabulation shows the 1 fold cross-validated evaluation of the models for their
corresponding steps of prediction.

It can be observed that NARX along with XGBoost is good for long term predictions.
The performance of the RFR and linear regressor along with NARX is almost the
same for 5 and 10 steps ahead predictions. But in the 50 and 100 steps ahead
predictions, Linear regressor is better than the random forest regressor and the
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Model ‘ MSE ‘ R? Score ‘ Variance
NARX + RFR 0.0001 0.9999 4.06 * 10716
NARX + XGBoost | 0.004713 | 0.9981 0.0048
NARX + FNN 0.0382 0.9885 0.0086
NARX + LR 0.0025 0.9991 0.00087

Table 6.1: Model Evaluation - 1 step ahead prediction

Model ‘ MSE ‘ R? Score ‘ Variance
NARX + RFR 0.1640 | 0.9574 17.0625
NARX + XGBoost | 0.08607 | 0.9705 0.0930
NARX + FNN 2.1090 | 0.4492 0.4712
NARX + LR 0.1193 | 0.9590 0.0386

Table 6.2: Model Evaluation - 10 steps ahead prediction.

Model ‘ MSE ‘ R? Score ‘ Variance
NARX + RFR 1.4176 | 0.6686 17.0625
NARX + XGBoost | 0.7018 | 0.8277 3.3319
NARX + FNN 32.5093 | -7.2936 29.8446
NARX + LR 1.6392 | 0.5600 1.2088

Table 6.3: Model Evaluation - 50 steps ahead prediction.

Model ‘ MSE ‘ R? Score ‘ Variance
NARX + RFR 1.5265 | 0.6272 98.3473
NARX + XGBoost | 0.6109 | 0.8783 3.0238
NARX + FNN 35.8976 | -7.6927 55.4745
NARX + LR 1.8124 | 0.6713 1.3791

Table 6.4: Model Evaluation - 100 steps ahead prediction.
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feed forward neural network. The XGBoost along with NARX performed the best
when compared to the rest of the models. NARX + XGBoost has a variance of 3
approximately for 50 steps and 100 steps ahead predictions which could be due to
the presence of outliers in the data.

In this thesis, we have shown that the NARX along with machine learning techniques
can successfully use its output feedback loop to improve its predictive performance
in complex time series prediction tasks.
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Discussion and Conclusion

In this chapter, the whole project will be discussed and some conclusions are drawn.
Some possible future work is mentioned as well.

7.1 Discussion

This project is aimed at the estimation and prediction of battery states of battery
electric vehicles. The whole project is based on a quite reasonable hypothesis, which
is the battery states such as SOC and SOH can be reflected in several signals like
current, voltage and temperature.

The study is done with real-world big data of the dataset C30 from Volvo Cars.
Analyzing the real-world data is the necessary step for applying machine learning
method on battery management systems. At the same time, it is a huge challenge.
The C30 dataset is collected from Volvo C30 battery electric cars in about 8 years
so the battery decaying problem is clear to observe. To have data over a long time
is the key to study battery degradation. The challenge, on the other hand, is that
dealing with such big data requires a long time and great computing power. In the
end, only a small part of the whole dataset is utilized for this reason.

The other issue of the data is caused by real-world impacts. The data is really
confusing with a lot of wrong logging and corrupting noise. The preprocessing took
a long time as well.

After cleaning the data, the next step is to find the right machine learning model.
According to the features of our problem, neural networks and regression models
are suitable. Recurrent neural networks are used to estimate the depth of discharge
after every charging process. Nonlinear autoregressive networks with exogenous
input have a good performance in estimating and predicting the state of health
decaying.

The above procedure can be concluded as a pipeline shown in figure 5.1. A simplified
energy synthesis is done according to the pipeline. Although the battery state model
is not complicated yet, final results show a good state.

7.2 Conclusion

We can see in both DOD estimation and SOH estimation the evaluations of the
models are good, which means machine learning methods have the potential to be
utilized in battery states estimation of battery electric vehicles.

In spite of some small errors, the total performance is satisfying. The error in DOD
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estimation is mainly within 5%, which meets the acceptable error. There are some
exceptions that show big errors. To solve the issue, more data processing should be
implemented to exclude the wrong data. Meanwhile, SOH estimation and prediction
based on engineered SOH labels are really accurate in a long period. This is very
important for EVs to evaluate the battery health condition.

All in all, machine learning methods are capable to handle battery states estimation
and battery degradation prediction problems in BEVs. This project is meaningful
and pioneering for further study.

7.3 Future development

To face complex situations and high demands on the battery of BEVs, an intelligent
battery adaptive management system must be developed. Machine learning meth-
ods are really strong tools to achieve the goal.

This project is just the start of applying machine learning methods on battery man-
agement systems. Due to limited time and resource, only some machine learning
methods with simplified structures are tried on a subset of the whole dataset. There-
fore, more work can be done in the future from several aspects.

Firstly, more data should be analyzed. To get a universal model and a general
evaluation on the model, the model should be trained and tested on a dataset of
sufficient big size. With stronger computing power and enough time in the future,
the actual involved data should be so much more than the one used in this project.
Secondly, more models should be introduced and with more complicated architec-
tures. In this way, complex battery behaviors are able to be understood.

This project is a pre-validation of applying machine learning methods on battery
management problem. With more work being done and more resources involving in
the future, we believe the realization of an intelligent battery management system
can be achieved soon.
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Appendix 1

A.1 Estimation of SOH

A.1.1 NARX + Random Forest Regressor
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Figure A.1: 1 Step predictions for Car 2 using Random Forest Regressor
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A.1.2 NARX 4+ XGBoost
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Figure A.5: 1 Step predictions for Car 3 using XGBoost Regressor
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Figure A.6: 1 Step predictions for Car 4 using XGBoost Regressor
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A.1.3 NARX + Feed Forward Network
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A.1.4 NARX + Linear Regressor
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B.1 Prediction of Battery Degradation using NARX
+ Random Forest Regressor

B.1.1 10 Step Ahead Predictions
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B.1.2 50 Step Ahead Predictions
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B.1.3 100 Step Ahead Predictions
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C.1 Prediction of Battery Degradation using NARX
+ XGBoost Regressor

C.1.1 10 Step Ahead Predictions

SoH Predictions for car2 - 10 Step ahead predictions

—— True SoH
—— XGBoost

8.50

8.25

8.00

N
\,
o

N
)
o

SoH [%] [Rescaled]

7.25

7.00

6.75

0 200 400 600 800 1000
Cycles

Figure C.1: 10 Step predictions for Car 2 using XGBoost Regressor
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C.1.2 50 Step Ahead Predictions
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C.1.3 100 Step Ahead Predictions
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D.1 Prediction of Battery Degradation using NARX
+ Feed Forward Network

D.1.1 10 Step Ahead Predictions
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Figure D.1: 10 Step predictions for Car 2 using Feed Forward Network
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Figure D.2: 10 Step predictions for Car 3 using Feed Forward Network
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D.1.2 50 Step Ahead Predictions
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Figure D.5: 50 Step predictions for Car 3 using Feed Forward Network
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D.1.3 100 Step Ahead Predictions
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E.1 Prediction of Battery Degradation using NARX
+ Linear Regressor

E.1.1 10 Step Ahead Predictions
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Figure E.1: 10 Step predictions for Car 2 using Linear Regressor
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Figure E.2: 10 Step predictions for Car 3 using Linear Regressor
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E.1.2 50 Step Ahead Predictions
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Figure E.4: 50 Step predictions for Car 2 using Linear Regressor

XLVII



E. Appendix 5

SoH Predictions for car3 - 50 Step ahead predictions

—— True SoH

9.25 —— Linear Regressor

9.00

8.75

©
&)
S

SoH [%] [Rescaled]

©
N
3

8.00

7.75

0 200 400 600 800 1000 1200 1400
Cycles

Figure E.5: 50 Step predictions for Car 3 using Linear Regressor

XLVIIT



E. Appendix 5

SoH Predictions for car4 - 50 Step ahead predictions

—— True SoH
10.0 —— Linear Regressor

9.5

9.0

8.5

SoH [%] [Rescaled]

8.0

7.5

7.0

0 200 400 600 800 1000 1200
Cycles

Figure E.6: 50 Step predictions for Car 4 using Linear Regressor
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E.1.3 100 Step Ahead Predictions
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Figure E.7: 100 Step predictions for Car 2 using Linear Regressor
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SoH Predictions for car3 - 100 Step ahead predictions
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Figure E.8: 100 Step predictions for Car 3 using Linear Regressor
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SoH Predictions for car4 - 100 Step ahead predictions
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Figure E.9: 100 Step predictions for Car 4 using Linear Regressor
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