(in chronological order)

(Pinned)

  • Future-Oriented Navigation for Autonomous Mobile Robots, Z. Zhang, Ph.D. Thesis, May 2025.
    Full Text

  • Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-Shot Energy-Based Multimodal Motion Prediction, Z. Zhang, G. Hess, J. Hu, E. Dean, L. Svensson, K. Åkesson, IEEE Robotics and Automation Letters (RA-L), vol. 10, no. 8, pp. 8043 - 8050, June 2025.
    Paper (PDF), Paper (IEEE)


(Others)

  • Collision-Free Navigation of Mobile Robots via Quadtree-Based Model Predictive Control, O. A. S. Ali, S. Koutsoftas, Z. Zhang, K. Åkesson, and E. Dean, IEEE SICE International Symposium on System Integration (SII), pp. X-X, 2025.
    (Master student project)
    Paper (arXiv), Paper (IEEE) Not Yet

  • Combining High Level Scheduling and Low Level Control to Manage Fleets of Mobile Robots, S. F. Roselli, Z. Zhang, and K. Åkesson, IEEE SICE International Symposium on System Integration (SII), pp. X-X, 2025.
    (Master student project)
    Paper (arXiv), Paper (IEEE) Not Yet

  • Gradient Field-Based Dynamic Window Approach for Collision Avoidance in Complex Environments, Z. Zhang, Y. Xue, N. Figueroa, K. Åkesson, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. X-X, 2025.
    Paper (arXiv), Paper (IEEE) Not Yet

  • Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-Shot Energy-Based Multimodal Motion Prediction, Z. Zhang, G. Hess, J. Hu, E. Dean, L. Svensson, K. Åkesson, IEEE Robotics and Automation Letters (RA-L), vol. 10, no. 8, pp. 8043 - 8050, June 2025.
    Paper (PDF), Paper (IEEE)


  • Bird’s-Eye-View Trajectory Planning of Multiple Robots using Continuous Deep Reinforcement Learning and Model Predictive Control, K. Ceder*, Z. Zhang*, A. Burman, I. Kuangaliyev, K. Mattsson, G. Nyman, A. Petersén, L. Wisell, and K. Åkesson, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8002-8008, 2024.
    (*Equal contribution)
    Paper (PDF), Paper (IEEE)

  • Prescient Collision-Free Navigation of Mobile Robots With Iterative Multimodal Motion Prediction of Dynamic Obstacles, Z. Zhang, H. Hajieghrary, E. Dean, and Knut Åkesson, IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 9, pp. 5488-5495, July 2023.
    Paper (PDF), Paper (IEEE)

  • Collision-free trajectory planning of mobile robots by integrating deep reinforcement learning and model predictive control, Z. Zhang, Y. Cai, K. Ceder, A. Enliden, O. Eriksson, S. Kylander, R. Sridhara and K. Åkesson, IEEE International Conference on Automation Science and Engineering (CASE), pp. 1-7, 2023.
    Paper (PDF), Paper (IEEE)


  • Multimodal motion prediction based on adaptive and swarm sampling loss functions for reactive mobile robots, Z. Zhang, E. Dean, Y. Karayiannidis, and K. Åkesson, IEEE International Conference on Automation Science and Engineering (CASE), pp. 1110-1115, 2022.
    Paper (PDF), Paper (IEEE)

  • Centralized versus distributed nonlinear model predictive control for online robot fleet trajectory planning, F. Bertilsson, M. Gordon, J. Hansson, D. Möller, D. Söderberg, Z. Zhang, and K. Åkesson, IEEE International Conference on Automation Science and Engineering (CASE), pp. 701-706, 2022.
    (Design project with master students)
    Paper (IEEE)

  • Motion Prediction Based on Multiple Futures for Dynamic Obstacle Avoidance of Mobile Robots, Z. Zhang, E. Dean, Y. Karayiannidis, and K. Åkesson, IEEE International Conference on Automation Science and Engineering (CASE), pp. 942-947, 2021.
    Paper (PDF), Paper (IEEE)

  • Trajectory generation for mobile robots in a dynamic environment using nonlinear model predictive control, J. Berlin, G. Hess, A. Karlsson, W. Ljungbergh, Z. Zhang, P.-L. Götvall, and K. Åkesson, IEEE International Conference on Automation Science and Engineering (CASE), pp. 942-947, 2021.
    (Design project with master students)
    Paper (IEEE)

Or check Google Scholar.